基于Rgb-To-Depth结构先验学习的端到端深度图压缩框架

Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong
{"title":"基于Rgb-To-Depth结构先验学习的端到端深度图压缩框架","authors":"Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong","doi":"10.1109/ICIP46576.2022.9898073","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning\",\"authors\":\"Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong\",\"doi\":\"10.1109/ICIP46576.2022.9898073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9898073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的框架来利用RGB-D数据内部的共享信息进行有效的深度图压缩。基于现有的端到端图像压缩网络设计了两种主要的编解码器,分别用于RGB图像压缩和RGB-to- depth结构优先的增强深度图像压缩。特别是,我们提出了一个结构先验融合(SPF)模块,从RGB和深度编解码器中提取多尺度特征级别的结构信息,并融合跨模态特征,以产生更有效的深度压缩结构先验。大量的实验表明,与直接压缩方案相比,该框架在深度图压缩方面可以获得具有竞争力的率失真性能以及RGB-D任务特定性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning
In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信