Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong
{"title":"基于Rgb-To-Depth结构先验学习的端到端深度图压缩框架","authors":"Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong","doi":"10.1109/ICIP46576.2022.9898073","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning\",\"authors\":\"Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong\",\"doi\":\"10.1109/ICIP46576.2022.9898073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9898073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning
In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.