基于对象的图像分类:现状和计算挑战

Ranga Raju Vatsavai
{"title":"基于对象的图像分类:现状和计算挑战","authors":"Ranga Raju Vatsavai","doi":"10.1145/2534921.2534927","DOIUrl":null,"url":null,"abstract":"As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Object based image classification: state of the art and computational challenges\",\"authors\":\"Ranga Raju Vatsavai\",\"doi\":\"10.1145/2534921.2534927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.\",\"PeriodicalId\":416086,\"journal\":{\"name\":\"International Workshop on Analytics for Big Geospatial Data\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Analytics for Big Geospatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534921.2534927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534921.2534927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着卫星遥感影像空间分辨率向亚米方向发展,需要重新设计主要基于像元(或单实例)的分类方法,以利用极高分辨率影像中的空间和结构模式。在这项工作中,我们通过新的多实例学习学习方案来研究基于对象的图像分析方法的优点。我们在大地理空间数据的背景下分析这些方法,并暗示读者一些突出的计算挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object based image classification: state of the art and computational challenges
As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信