Takashi Toi, J. Wadatsumi, Hiroyuki Kobayashi, Yutaka Shimizu, Yuji Satoh, Makoto Morimoto, R. Ito, M. Ashida, Y. Tsubouchi, M. Nozawa, Go Urakawa, J. Deguchi
{"title":"30.3高带宽大容量存储系统的25.6Gb/s上行下行接口,采用基于pam -4的4路复用和环拓扑级联话单电路","authors":"Takashi Toi, J. Wadatsumi, Hiroyuki Kobayashi, Yutaka Shimizu, Yuji Satoh, Makoto Morimoto, R. Ito, M. Ashida, Y. Tsubouchi, M. Nozawa, Go Urakawa, J. Deguchi","doi":"10.1109/ISSCC.2019.8662429","DOIUrl":null,"url":null,"abstract":"High-bandwidth (BW) and large-capacity storage systems with NAND Flash memory (hereinafter referred to as “NAND”) have been increasingly required for big data applications, such as the field of advanced biomedical science [1]. However, a conventional NAND interface (I/F), e.g., Toggle DDR, with multi-drop bus topology has a tradeoff between BW and capacity due to the large load capacitance of NAND packages (PKGs). Although increasing the number of parallelized lanes of Toggle DDR improves both BW and capacity, it costs a large number of pins/wires on a controller/PCB. In order to overcome these problems, a daisy-chained serial I/F has been proposed [2]. In the I/F, bridge chips mask large load capacitance of NAND PKGs seen from a controller’s transmitter (TX) so that a 12.8Gb/s downlink is realized. However, the multi-band multiplexing technique employed in [2] has a drawback in the difficulty in implementing an uplink because severe timing control is required for cumulatively multiplexing multiple bands (i.e., channels) in each bridge chip. In order to realize both a downlink and an uplink with lower power consumption, this paper presents a newly developed serial I/F with three key techniques: (1) PAM-4-based 4-channel (4-ch) multiplexing, (2) cascaded CDR circuits in (3) ring topology. The fabricated transceiver (TRX) for the proposed I/F achieves 3.69pJ/b with a BER lower than 10-15 at 25.Gb/s with PRBS31 through 1.84dB of channel loss at 6.4GHz. The proposed I/F can achieve a state-of-the-art FoM (defined as “# of packages × Data Rate / power consumption”) of 1.80PKG.Gb/s/mW.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"30.3 A 25.6Gb/s Uplink-Downlink Interface Employing PAM-4-Based 4-Channel Multiplexing and Cascaded CDR Circuits in Ring Topology for High-Bandwidth and Large-Capacity Storage Systems\",\"authors\":\"Takashi Toi, J. Wadatsumi, Hiroyuki Kobayashi, Yutaka Shimizu, Yuji Satoh, Makoto Morimoto, R. Ito, M. Ashida, Y. Tsubouchi, M. Nozawa, Go Urakawa, J. Deguchi\",\"doi\":\"10.1109/ISSCC.2019.8662429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-bandwidth (BW) and large-capacity storage systems with NAND Flash memory (hereinafter referred to as “NAND”) have been increasingly required for big data applications, such as the field of advanced biomedical science [1]. However, a conventional NAND interface (I/F), e.g., Toggle DDR, with multi-drop bus topology has a tradeoff between BW and capacity due to the large load capacitance of NAND packages (PKGs). Although increasing the number of parallelized lanes of Toggle DDR improves both BW and capacity, it costs a large number of pins/wires on a controller/PCB. In order to overcome these problems, a daisy-chained serial I/F has been proposed [2]. In the I/F, bridge chips mask large load capacitance of NAND PKGs seen from a controller’s transmitter (TX) so that a 12.8Gb/s downlink is realized. However, the multi-band multiplexing technique employed in [2] has a drawback in the difficulty in implementing an uplink because severe timing control is required for cumulatively multiplexing multiple bands (i.e., channels) in each bridge chip. In order to realize both a downlink and an uplink with lower power consumption, this paper presents a newly developed serial I/F with three key techniques: (1) PAM-4-based 4-channel (4-ch) multiplexing, (2) cascaded CDR circuits in (3) ring topology. The fabricated transceiver (TRX) for the proposed I/F achieves 3.69pJ/b with a BER lower than 10-15 at 25.Gb/s with PRBS31 through 1.84dB of channel loss at 6.4GHz. The proposed I/F can achieve a state-of-the-art FoM (defined as “# of packages × Data Rate / power consumption”) of 1.80PKG.Gb/s/mW.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
30.3 A 25.6Gb/s Uplink-Downlink Interface Employing PAM-4-Based 4-Channel Multiplexing and Cascaded CDR Circuits in Ring Topology for High-Bandwidth and Large-Capacity Storage Systems
High-bandwidth (BW) and large-capacity storage systems with NAND Flash memory (hereinafter referred to as “NAND”) have been increasingly required for big data applications, such as the field of advanced biomedical science [1]. However, a conventional NAND interface (I/F), e.g., Toggle DDR, with multi-drop bus topology has a tradeoff between BW and capacity due to the large load capacitance of NAND packages (PKGs). Although increasing the number of parallelized lanes of Toggle DDR improves both BW and capacity, it costs a large number of pins/wires on a controller/PCB. In order to overcome these problems, a daisy-chained serial I/F has been proposed [2]. In the I/F, bridge chips mask large load capacitance of NAND PKGs seen from a controller’s transmitter (TX) so that a 12.8Gb/s downlink is realized. However, the multi-band multiplexing technique employed in [2] has a drawback in the difficulty in implementing an uplink because severe timing control is required for cumulatively multiplexing multiple bands (i.e., channels) in each bridge chip. In order to realize both a downlink and an uplink with lower power consumption, this paper presents a newly developed serial I/F with three key techniques: (1) PAM-4-based 4-channel (4-ch) multiplexing, (2) cascaded CDR circuits in (3) ring topology. The fabricated transceiver (TRX) for the proposed I/F achieves 3.69pJ/b with a BER lower than 10-15 at 25.Gb/s with PRBS31 through 1.84dB of channel loss at 6.4GHz. The proposed I/F can achieve a state-of-the-art FoM (defined as “# of packages × Data Rate / power consumption”) of 1.80PKG.Gb/s/mW.