{"title":"类型是内部∞-Groupoids","authors":"A. Allioux, Eric Finster, Matthieu Sozeau","doi":"10.1109/LICS52264.2021.9470541","DOIUrl":null,"url":null,"abstract":"By extending type theory with a universe of definitionally associative and unital polynomial monads, we show how to arrive at a definition of opetopic type which is able to encode a number of fully coherent algebraic structures. In particular, our approach leads to a definition of ∞-groupoid internal to type theory and we prove that the type of such ∞-groupoids is equivalent to the universe of types. That is, every type admits the structure of an ∞-groupoid internally, and this structure is unique.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Types Are Internal ∞-Groupoids\",\"authors\":\"A. Allioux, Eric Finster, Matthieu Sozeau\",\"doi\":\"10.1109/LICS52264.2021.9470541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By extending type theory with a universe of definitionally associative and unital polynomial monads, we show how to arrive at a definition of opetopic type which is able to encode a number of fully coherent algebraic structures. In particular, our approach leads to a definition of ∞-groupoid internal to type theory and we prove that the type of such ∞-groupoids is equivalent to the universe of types. That is, every type admits the structure of an ∞-groupoid internally, and this structure is unique.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
By extending type theory with a universe of definitionally associative and unital polynomial monads, we show how to arrive at a definition of opetopic type which is able to encode a number of fully coherent algebraic structures. In particular, our approach leads to a definition of ∞-groupoid internal to type theory and we prove that the type of such ∞-groupoids is equivalent to the universe of types. That is, every type admits the structure of an ∞-groupoid internally, and this structure is unique.