基于呼叫详细记录的蜂窝通信量预测的多元建模与分析

Senem Tanberk, O. Demir
{"title":"基于呼叫详细记录的蜂窝通信量预测的多元建模与分析","authors":"Senem Tanberk, O. Demir","doi":"10.1109/UBMK55850.2022.9919559","DOIUrl":null,"url":null,"abstract":"Data traffic prediction is essential for resource planning and allocation for service providers. Call Detail Records (CDR) provides invaluable information about user movements and behavior. However, the scale and complexity of CDR arise problems with its continuous usage in real-life issues. In this study, we propose a summary data structure out of CDR data to improve analysis performance. We then use this new data structure to make inferences using Multivariate Time Series analyses about the data traffic. We used several models, including Long Short-Term Memory networks (LSTM) and eXtreme Gradient Boosting (XGBoost), to verify the effectiveness of this approach. According to the results, our multivariate approach ensures usage trend capture. The research findings are efficient and suitable for predicting real-world network traffic based on usage type.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Modeling and Analysis for Cellular Traffic Prediction Using Call Detail Records\",\"authors\":\"Senem Tanberk, O. Demir\",\"doi\":\"10.1109/UBMK55850.2022.9919559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data traffic prediction is essential for resource planning and allocation for service providers. Call Detail Records (CDR) provides invaluable information about user movements and behavior. However, the scale and complexity of CDR arise problems with its continuous usage in real-life issues. In this study, we propose a summary data structure out of CDR data to improve analysis performance. We then use this new data structure to make inferences using Multivariate Time Series analyses about the data traffic. We used several models, including Long Short-Term Memory networks (LSTM) and eXtreme Gradient Boosting (XGBoost), to verify the effectiveness of this approach. According to the results, our multivariate approach ensures usage trend capture. The research findings are efficient and suitable for predicting real-world network traffic based on usage type.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据流量预测对服务提供商的资源规划和分配至关重要。呼叫详细记录(CDR)提供了关于用户移动和行为的宝贵信息。然而,CDR的规模和复杂性使其在现实生活中的持续使用产生了问题。在本研究中,我们提出了一种基于CDR数据的汇总数据结构,以提高分析性能。然后,我们使用这种新的数据结构,通过对数据流量的多元时间序列分析来进行推断。我们使用了几个模型,包括长短期记忆网络(LSTM)和极端梯度增强(XGBoost),来验证这种方法的有效性。根据结果,我们的多变量方法确保了使用趋势捕获。研究结果是有效的,适用于基于使用类型的现实网络流量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Modeling and Analysis for Cellular Traffic Prediction Using Call Detail Records
Data traffic prediction is essential for resource planning and allocation for service providers. Call Detail Records (CDR) provides invaluable information about user movements and behavior. However, the scale and complexity of CDR arise problems with its continuous usage in real-life issues. In this study, we propose a summary data structure out of CDR data to improve analysis performance. We then use this new data structure to make inferences using Multivariate Time Series analyses about the data traffic. We used several models, including Long Short-Term Memory networks (LSTM) and eXtreme Gradient Boosting (XGBoost), to verify the effectiveness of this approach. According to the results, our multivariate approach ensures usage trend capture. The research findings are efficient and suitable for predicting real-world network traffic based on usage type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信