多维元胞自动机的简单最优时间FSSP算法

AUTOMATA & JAC Pub Date : 2012-08-13 DOI:10.4204/EPTCS.90.13
H. Umeo, Kinuo Nishide, Keisuke Kubo
{"title":"多维元胞自动机的简单最优时间FSSP算法","authors":"H. Umeo, Kinuo Nishide, Keisuke Kubo","doi":"10.4204/EPTCS.90.13","DOIUrl":null,"url":null,"abstract":"The firing squad synchronization problem (FSSP) on cellular automata has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a simple recursive-halving based optimum-time synchronization algorithm that can synchronize any rectangle arrays of size m n with a general at one corner in m+ n+ max(m; n) 3 steps. The algorithm is a natural expansion of the well-known FSSP algorithms proposed by Balzer [1967], Gerken [1987], and Waksman [1966] and it can be easily expanded to three-dimensional arrays, even to multi-dimensional arrays with a general at any position of the array. The algorithm proposed is isotropic concerning the side-lengths of multi-dimensional arrays and its algorithmic correctness is transparent and easily verified.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata\",\"authors\":\"H. Umeo, Kinuo Nishide, Keisuke Kubo\",\"doi\":\"10.4204/EPTCS.90.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The firing squad synchronization problem (FSSP) on cellular automata has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a simple recursive-halving based optimum-time synchronization algorithm that can synchronize any rectangle arrays of size m n with a general at one corner in m+ n+ max(m; n) 3 steps. The algorithm is a natural expansion of the well-known FSSP algorithms proposed by Balzer [1967], Gerken [1987], and Waksman [1966] and it can be easily expanded to three-dimensional arrays, even to multi-dimensional arrays with a general at any position of the array. The algorithm proposed is isotropic concerning the side-lengths of multi-dimensional arrays and its algorithmic correctness is transparent and easily verified.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

元胞自动机上的行刑队同步问题(FSSP)已经得到了四十多年的广泛研究,不仅针对一维阵列,也针对二维阵列提出了丰富多样的同步算法。在本文中,我们提出了一个简单的基于递归减半的最优时间同步算法,该算法可以同步任何大小为m n的矩形数组与m+ n+ max(m;N) 3步。该算法是对Balzer[1967]、Gerken[1987]和Waksman[1966]提出的著名的FSSP算法的自然扩展,它可以很容易地扩展到三维数组,甚至可以扩展到多维数组,在数组的任何位置都有一个将军。该算法对多维阵列的边长具有各向同性,算法的正确性透明且易于验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata
The firing squad synchronization problem (FSSP) on cellular automata has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a simple recursive-halving based optimum-time synchronization algorithm that can synchronize any rectangle arrays of size m n with a general at one corner in m+ n+ max(m; n) 3 steps. The algorithm is a natural expansion of the well-known FSSP algorithms proposed by Balzer [1967], Gerken [1987], and Waksman [1966] and it can be easily expanded to three-dimensional arrays, even to multi-dimensional arrays with a general at any position of the array. The algorithm proposed is isotropic concerning the side-lengths of multi-dimensional arrays and its algorithmic correctness is transparent and easily verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信