利用个性指标改进多核处理器缓存干扰管理

Mwaffaq Otoom, A. Jaleel, P. Trancoso
{"title":"利用个性指标改进多核处理器缓存干扰管理","authors":"Mwaffaq Otoom, A. Jaleel, P. Trancoso","doi":"10.1145/3075564.3075591","DOIUrl":null,"url":null,"abstract":"The trend of increasing the number of cores in a processor will lead to certain challenges, among which the fact that more cores issue more memory requests and this in turn will increase the competition, or interference, for shared resources such as the Last-Level Cache (LLC). In this work we focus on the cache interference while executing Decision Support System queries, which is a common case for a Data Center scenario. We study the co-execution of different queries from the TPC-H benchmark using the PostgreSQL DBMS system on a multicore with up to 16 cores and different LLC configurations. In addition to the working set metric, to better understand the effects of co-execution, we develop two new \"personality\" metrics to classify the behavior of the queries in co-execution: social and sensitive metrics. These metrics can be used to manage the cache interference and thus improve the co-execution performance of the queries.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Personality Metrics to Improve Cache Interference Management in Multicore Processors\",\"authors\":\"Mwaffaq Otoom, A. Jaleel, P. Trancoso\",\"doi\":\"10.1145/3075564.3075591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend of increasing the number of cores in a processor will lead to certain challenges, among which the fact that more cores issue more memory requests and this in turn will increase the competition, or interference, for shared resources such as the Last-Level Cache (LLC). In this work we focus on the cache interference while executing Decision Support System queries, which is a common case for a Data Center scenario. We study the co-execution of different queries from the TPC-H benchmark using the PostgreSQL DBMS system on a multicore with up to 16 cores and different LLC configurations. In addition to the working set metric, to better understand the effects of co-execution, we develop two new \\\"personality\\\" metrics to classify the behavior of the queries in co-execution: social and sensitive metrics. These metrics can be used to manage the cache interference and thus improve the co-execution performance of the queries.\",\"PeriodicalId\":398898,\"journal\":{\"name\":\"Proceedings of the Computing Frontiers Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Computing Frontiers Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3075564.3075591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

处理器中内核数量的增加趋势将带来一些挑战,其中的事实是,更多的内核发出更多的内存请求,这反过来又会增加共享资源(如最后一级缓存(LLC))的竞争或干扰。在这项工作中,我们主要关注在执行决策支持系统查询时的缓存干扰,这是数据中心场景的常见情况。我们使用PostgreSQL DBMS系统在多达16核的多核和不同的LLC配置上研究了TPC-H基准测试中不同查询的协同执行。除了工作集度量之外,为了更好地理解协同执行的影响,我们开发了两个新的“个性”度量来对协同执行中的查询行为进行分类:社交度量和敏感度量。这些指标可用于管理缓存干扰,从而提高查询的协同执行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Personality Metrics to Improve Cache Interference Management in Multicore Processors
The trend of increasing the number of cores in a processor will lead to certain challenges, among which the fact that more cores issue more memory requests and this in turn will increase the competition, or interference, for shared resources such as the Last-Level Cache (LLC). In this work we focus on the cache interference while executing Decision Support System queries, which is a common case for a Data Center scenario. We study the co-execution of different queries from the TPC-H benchmark using the PostgreSQL DBMS system on a multicore with up to 16 cores and different LLC configurations. In addition to the working set metric, to better understand the effects of co-execution, we develop two new "personality" metrics to classify the behavior of the queries in co-execution: social and sensitive metrics. These metrics can be used to manage the cache interference and thus improve the co-execution performance of the queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信