编码视频序列中兴趣区域的自动提取与跟踪

Tianyun Huang
{"title":"编码视频序列中兴趣区域的自动提取与跟踪","authors":"Tianyun Huang","doi":"10.1109/CCSSE.2014.7224532","DOIUrl":null,"url":null,"abstract":"Region of Interest (ROI) plays an important role in many video-based applications such as video monitoring, object tracking, object-based video coding, etc. However, it is still hard to define, extract and track the ROI in a video sequence. A combined scheme is proposed to automatically determine, extract and track the ROI in a coded video sequence. Both the visual attention model in human vision system (HVS) and the temporal motion cues in a video sequence are incorporated to generate the saliency maps and to determine the ROI. The identified ROI is tracked frame to frame in the compressed domain, using only the motion vectors. This idea can be applied to ROI based video coding, adaptation and content delivery, etc.","PeriodicalId":251022,"journal":{"name":"2014 IEEE International Conference on Control Science and Systems Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic region of interest extraction and tracking in coded video sequence\",\"authors\":\"Tianyun Huang\",\"doi\":\"10.1109/CCSSE.2014.7224532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Region of Interest (ROI) plays an important role in many video-based applications such as video monitoring, object tracking, object-based video coding, etc. However, it is still hard to define, extract and track the ROI in a video sequence. A combined scheme is proposed to automatically determine, extract and track the ROI in a coded video sequence. Both the visual attention model in human vision system (HVS) and the temporal motion cues in a video sequence are incorporated to generate the saliency maps and to determine the ROI. The identified ROI is tracked frame to frame in the compressed domain, using only the motion vectors. This idea can be applied to ROI based video coding, adaptation and content delivery, etc.\",\"PeriodicalId\":251022,\"journal\":{\"name\":\"2014 IEEE International Conference on Control Science and Systems Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Control Science and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCSSE.2014.7224532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Control Science and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSE.2014.7224532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

感兴趣区域(ROI)在视频监控、目标跟踪、基于对象的视频编码等许多基于视频的应用中起着重要作用。然而,在视频序列中定义、提取和跟踪ROI仍然是一个困难的问题。提出了一种自动确定、提取和跟踪编码视频序列中ROI的组合方案。将人类视觉系统中的视觉注意模型和视频序列中的时间运动线索结合起来,生成显著性图并确定ROI。仅使用运动向量,在压缩域中逐帧跟踪识别的ROI。这个想法可以应用于基于ROI的视频编码、改编和内容交付等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic region of interest extraction and tracking in coded video sequence
Region of Interest (ROI) plays an important role in many video-based applications such as video monitoring, object tracking, object-based video coding, etc. However, it is still hard to define, extract and track the ROI in a video sequence. A combined scheme is proposed to automatically determine, extract and track the ROI in a coded video sequence. Both the visual attention model in human vision system (HVS) and the temporal motion cues in a video sequence are incorporated to generate the saliency maps and to determine the ROI. The identified ROI is tracked frame to frame in the compressed domain, using only the motion vectors. This idea can be applied to ROI based video coding, adaptation and content delivery, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信