{"title":"桁架分析","authors":"","doi":"10.1017/9781108869027.010","DOIUrl":null,"url":null,"abstract":"A B C D E L S1y S1x S2 θ θ θ θ θ θ Assume forces in truss are as indicated. Then the forces at each node are as follows: At A: S1x – FAE FAB cosθ = 0 S1y FAB sinθ = 0 At B: FAB cosθ FBE cosθ FBC = 0 FAB sinθ + FBE sinθ = 0 At C: FBC + FCE cosθ FCD cosθ = 0 FCE sinθ + FCD sinθ = 0 At D: FDE + FCD cosθ = 0 S2 – FCD sinθ = 0 At E: FAE – FDE + FBE cosθ FCE cosθ = 0 -FBE sinθ FCE sinθ L = 0 Then these equations can be put into matrix form as:","PeriodicalId":437098,"journal":{"name":"Design Optimization using MATLAB and SOLIDWORKS","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Truss Analysis\",\"authors\":\"\",\"doi\":\"10.1017/9781108869027.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A B C D E L S1y S1x S2 θ θ θ θ θ θ Assume forces in truss are as indicated. Then the forces at each node are as follows: At A: S1x – FAE FAB cosθ = 0 S1y FAB sinθ = 0 At B: FAB cosθ FBE cosθ FBC = 0 FAB sinθ + FBE sinθ = 0 At C: FBC + FCE cosθ FCD cosθ = 0 FCE sinθ + FCD sinθ = 0 At D: FDE + FCD cosθ = 0 S2 – FCD sinθ = 0 At E: FAE – FDE + FBE cosθ FCE cosθ = 0 -FBE sinθ FCE sinθ L = 0 Then these equations can be put into matrix form as:\",\"PeriodicalId\":437098,\"journal\":{\"name\":\"Design Optimization using MATLAB and SOLIDWORKS\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Optimization using MATLAB and SOLIDWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108869027.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Optimization using MATLAB and SOLIDWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108869027.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
A B C D E L S1y S1x S2 θ θ θ θ θ θ θ θ θ假设桁架受力如下所示。然后每个节点的力量如下:一:S1x——仙外事局cosθ= 0 S1y工厂sinθ= 0 B:工厂cosθ领域cosθ流化床燃烧器= 0工厂sinθ+领域sinθ= 0 C:流化床燃烧器+ FCE考试cosθFCD cosθ= 0 FCE考试sinθ+ FCD sinθ= 0 D: FDE + FCD cosθ= 0 S2 - FCD sinθ= 0 E:仙灵- FDE +领域cosθFCE考试cosθ= 0领域sinθFCE考试sinθL = 0然后这些方程可以被放到矩阵形式为:
A B C D E L S1y S1x S2 θ θ θ θ θ θ Assume forces in truss are as indicated. Then the forces at each node are as follows: At A: S1x – FAE FAB cosθ = 0 S1y FAB sinθ = 0 At B: FAB cosθ FBE cosθ FBC = 0 FAB sinθ + FBE sinθ = 0 At C: FBC + FCE cosθ FCD cosθ = 0 FCE sinθ + FCD sinθ = 0 At D: FDE + FCD cosθ = 0 S2 – FCD sinθ = 0 At E: FAE – FDE + FBE cosθ FCE cosθ = 0 -FBE sinθ FCE sinθ L = 0 Then these equations can be put into matrix form as: