场景中无人机交互的对象定位

Sabyasachi Moitra, S. Biswas
{"title":"场景中无人机交互的对象定位","authors":"Sabyasachi Moitra, S. Biswas","doi":"10.1109/ICCECE51049.2023.10085125","DOIUrl":null,"url":null,"abstract":"Object detection methods use NMS (Non-Maximum Suppression) to remove multiple detections for a particular object for its localization. To perform this task, NMS requires a confidence threshold and an IoU (Intersection-over-Union) threshold which need to be supplied by an user. Thresholds are fixed and different for different object detection methods, e.g., R-CNN, Faster R-CNN, YOLO, etc. In this paper, we propose a method that uses a suitable regression model to find the threshold values which is adaptive in nature, eliminating the need for human interaction for localization of objects in the scene. The order of the model is determined through bias-variance trade-off and its goodness-of-fit is justified by R2 (R-squared) score and χ2 (Chi-squared) test. Results are impressive and attractive.","PeriodicalId":447131,"journal":{"name":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Interaction-Free Object Localization in a Scene\",\"authors\":\"Sabyasachi Moitra, S. Biswas\",\"doi\":\"10.1109/ICCECE51049.2023.10085125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection methods use NMS (Non-Maximum Suppression) to remove multiple detections for a particular object for its localization. To perform this task, NMS requires a confidence threshold and an IoU (Intersection-over-Union) threshold which need to be supplied by an user. Thresholds are fixed and different for different object detection methods, e.g., R-CNN, Faster R-CNN, YOLO, etc. In this paper, we propose a method that uses a suitable regression model to find the threshold values which is adaptive in nature, eliminating the need for human interaction for localization of objects in the scene. The order of the model is determined through bias-variance trade-off and its goodness-of-fit is justified by R2 (R-squared) score and χ2 (Chi-squared) test. Results are impressive and attractive.\",\"PeriodicalId\":447131,\"journal\":{\"name\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE51049.2023.10085125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51049.2023.10085125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对象检测方法使用NMS (Non-Maximum Suppression,非最大抑制)去除对特定对象的多个检测以实现其定位。为了执行此任务,NMS需要一个置信度阈值和一个IoU (union - Intersection-over-Union)阈值,它们需要由用户提供。对于不同的目标检测方法,阈值是固定的,并且是不同的,例如R-CNN, Faster R-CNN, YOLO等。在本文中,我们提出了一种使用合适的回归模型来寻找阈值的方法,该方法本质上是自适应的,从而消除了对场景中物体定位的人工干预。通过偏方差权衡来确定模型的顺序,并通过R2 (R-squared)分数和χ2 (Chi-squared)检验来证明其拟合优度。结果是令人印象深刻和吸引人的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Interaction-Free Object Localization in a Scene
Object detection methods use NMS (Non-Maximum Suppression) to remove multiple detections for a particular object for its localization. To perform this task, NMS requires a confidence threshold and an IoU (Intersection-over-Union) threshold which need to be supplied by an user. Thresholds are fixed and different for different object detection methods, e.g., R-CNN, Faster R-CNN, YOLO, etc. In this paper, we propose a method that uses a suitable regression model to find the threshold values which is adaptive in nature, eliminating the need for human interaction for localization of objects in the scene. The order of the model is determined through bias-variance trade-off and its goodness-of-fit is justified by R2 (R-squared) score and χ2 (Chi-squared) test. Results are impressive and attractive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信