基于语音过滤和请求驱动解码的动态词汇识别

Mickael Rouvier, G. Linarès, B. Lecouteux
{"title":"基于语音过滤和请求驱动解码的动态词汇识别","authors":"Mickael Rouvier, G. Linarès, B. Lecouteux","doi":"10.1109/SLT.2008.4777901","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of on-the-fly term spotting in continuous speech streams. We propose a 2-level architecture in which recall and accuracy are sequentially optimized. The first level uses a cascade of phonetic filters to select the speech segments which probably contain the targeted terms. The second level performs a request-driven decoding of the selected speech segments. The results show good performance of the proposed system on broadcast news data : the best configuration reaches a F-measure of about 94% while respecting the on-the-fly processing constraint.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-the-fly term spotting by phonetic filtering and request-driven decoding\",\"authors\":\"Mickael Rouvier, G. Linarès, B. Lecouteux\",\"doi\":\"10.1109/SLT.2008.4777901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of on-the-fly term spotting in continuous speech streams. We propose a 2-level architecture in which recall and accuracy are sequentially optimized. The first level uses a cascade of phonetic filters to select the speech segments which probably contain the targeted terms. The second level performs a request-driven decoding of the selected speech segments. The results show good performance of the proposed system on broadcast news data : the best configuration reaches a F-measure of about 94% while respecting the on-the-fly processing constraint.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文解决了连续语音流中动态术语识别问题。我们提出了一个两级架构,其中召回率和准确率依次优化。第一层使用语音过滤器级联来选择可能包含目标术语的语音片段。第二层对所选语音段执行请求驱动的解码。结果表明,所提出的系统在广播新闻数据上具有良好的性能:在尊重实时处理约束的情况下,最佳配置达到了约94%的f度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-the-fly term spotting by phonetic filtering and request-driven decoding
This paper addresses the problem of on-the-fly term spotting in continuous speech streams. We propose a 2-level architecture in which recall and accuracy are sequentially optimized. The first level uses a cascade of phonetic filters to select the speech segments which probably contain the targeted terms. The second level performs a request-driven decoding of the selected speech segments. The results show good performance of the proposed system on broadcast news data : the best configuration reaches a F-measure of about 94% while respecting the on-the-fly processing constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信