神经网络辅助控制环调谐器

W. Wojsznis, T. Blevins, D. Thiele
{"title":"神经网络辅助控制环调谐器","authors":"W. Wojsznis, T. Blevins, D. Thiele","doi":"10.1109/CCA.1999.806673","DOIUrl":null,"url":null,"abstract":"Explores the application of nonlinear tuning rules estimators to a known relay-oscillation tuner. Two approaches were tested. One uses nonlinear functions to approximate the desirable controller parameters. The other incorporates a neural network for computing the process model and controller parameters. As a basis for computation, the ultimate gain, ultimate period, and process dead time are defined during the tuning experiment. The neural network is trained in simulation using these process parameters as inputs and known process model parameters and desired PID controller tuning parameters as outputs. The PID tuning parameters are defined from the simulation process model using IMC or lambda tuning rules. This concept was implemented in a scalable industrial control system. Simulation test results show a vast improvement in model identification and control loop performance as compared to previous relay-oscillation based tuning approaches.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural network assisted control loop tuner\",\"authors\":\"W. Wojsznis, T. Blevins, D. Thiele\",\"doi\":\"10.1109/CCA.1999.806673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explores the application of nonlinear tuning rules estimators to a known relay-oscillation tuner. Two approaches were tested. One uses nonlinear functions to approximate the desirable controller parameters. The other incorporates a neural network for computing the process model and controller parameters. As a basis for computation, the ultimate gain, ultimate period, and process dead time are defined during the tuning experiment. The neural network is trained in simulation using these process parameters as inputs and known process model parameters and desired PID controller tuning parameters as outputs. The PID tuning parameters are defined from the simulation process model using IMC or lambda tuning rules. This concept was implemented in a scalable industrial control system. Simulation test results show a vast improvement in model identification and control loop performance as compared to previous relay-oscillation based tuning approaches.\",\"PeriodicalId\":325193,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1999.806673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.806673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

探讨了非线性调谐规则估计器在已知继电器振荡调谐器中的应用。测试了两种方法。一种是用非线性函数来近似理想的控制器参数。另一种方法采用神经网络计算过程模型和控制器参数。作为计算的基础,在调谐实验中定义了最终增益、最终周期和过程死区时间。以这些过程参数作为输入,以已知过程模型参数和期望的PID控制器整定参数作为输出,对神经网络进行仿真训练。PID整定参数使用IMC或lambda整定规则从仿真过程模型中定义。这个概念在一个可扩展的工业控制系统中实现。仿真测试结果表明,与以前基于继电器振荡的调谐方法相比,该方法在模型识别和控制回路性能方面有了巨大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network assisted control loop tuner
Explores the application of nonlinear tuning rules estimators to a known relay-oscillation tuner. Two approaches were tested. One uses nonlinear functions to approximate the desirable controller parameters. The other incorporates a neural network for computing the process model and controller parameters. As a basis for computation, the ultimate gain, ultimate period, and process dead time are defined during the tuning experiment. The neural network is trained in simulation using these process parameters as inputs and known process model parameters and desired PID controller tuning parameters as outputs. The PID tuning parameters are defined from the simulation process model using IMC or lambda tuning rules. This concept was implemented in a scalable industrial control system. Simulation test results show a vast improvement in model identification and control loop performance as compared to previous relay-oscillation based tuning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信