{"title":"正式的botthurston循环和部分正式的Riemann-Roch定理","authors":"Денис Васильевич Осипов, D. Osipov","doi":"10.4213/tm4310","DOIUrl":null,"url":null,"abstract":"Коцикл Ботта-Тeрстона - это $2$-коцикл на группе сохраняющих ориентацию диффеоморфизмов окружности. Вводится и изучается формальный аналог коцикла Ботта-Тeрстона. Формальный коцикл Ботта-Тeрстона - это $2$-коцикл на группе непрерывных $A$-автоморфизмов алгебры $A((t))$ рядов Лорана над коммутативным кольцом $A$ со значениями в группе $A^*$ обратимых элементов кольца $A$. Доказывается, что центральное расширение, заданное формальным коциклом Ботта-Тeрстона, эквивалентно 12-кратной сумме Бэра детерминантного центрального расширения, если $A$ является $\\mathbb Q$-алгеброй. В качестве следствия этого результата доказывается часть новой формальной теоремы Римана-Роха. Эта теорема Римана-Роха применяется к окольцованному пространству на отделимой схеме $S$ над полем $\\mathbb Q$, где структурный пучок окольцованного пространства локально на схеме $S$ изоморфен пучку $\\mathcal O_S((t))$ и склеивающие автоморфизмы непрерывны. Локально на схеме $S$ это окольцованное пространство соответствует проколотой формальной окрестности сечения гладкого морфизма в $U$ относительной размерности $1$, где $U \\subset S$ - открытое подмножество.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal Bott-Thurston Cocycle and Part of a Formal Riemann-Roch Theorem\",\"authors\":\"Денис Васильевич Осипов, D. Osipov\",\"doi\":\"10.4213/tm4310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Коцикл Ботта-Тeрстона - это $2$-коцикл на группе сохраняющих ориентацию диффеоморфизмов окружности. Вводится и изучается формальный аналог коцикла Ботта-Тeрстона. Формальный коцикл Ботта-Тeрстона - это $2$-коцикл на группе непрерывных $A$-автоморфизмов алгебры $A((t))$ рядов Лорана над коммутативным кольцом $A$ со значениями в группе $A^*$ обратимых элементов кольца $A$. Доказывается, что центральное расширение, заданное формальным коциклом Ботта-Тeрстона, эквивалентно 12-кратной сумме Бэра детерминантного центрального расширения, если $A$ является $\\\\mathbb Q$-алгеброй. В качестве следствия этого результата доказывается часть новой формальной теоремы Римана-Роха. Эта теорема Римана-Роха применяется к окольцованному пространству на отделимой схеме $S$ над полем $\\\\mathbb Q$, где структурный пучок окольцованного пространства локально на схеме $S$ изоморфен пучку $\\\\mathcal O_S((t))$ и склеивающие автоморфизмы непрерывны. Локально на схеме $S$ это окольцованное пространство соответствует проколотой формальной окрестности сечения гладкого морфизма в $U$ относительной размерности $1$, где $U \\\\subset S$ - открытое подмножество.\",\"PeriodicalId\":134662,\"journal\":{\"name\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tm4310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
bott - terston循环是一个2美元的循环,在一组保持圆的衍生物方向的循环中。它被引入并研究了bott - terston co周期的正式模拟。博特正式коциклтeрстон是$ 2 $ -коцикл自同构群连续$ A $ $ A (t) $一系列代数交换环laurent美元$组中值$ A $ A $ ^ * $可逆元素戒指。证明,botta - terston正式co周期下的中央扩张相当于12倍的定量中央扩张,如果A美元是/ mathbb Q代数的话。结果证明了黎曼-罗查新形式定理的一部分。雷曼-罗查定理适用于分离空间图上的S美元/ mathbb Q字段,在那里,环形空间的结构束局部出现在S . S . othcal O_S(t)和粘在一起的自同构图上。在当地的美元计划表上,这个圆形空间与光滑的1美元相对尺度为1美元的正式区域相对应,U / subset S是一个开放子集。
Formal Bott-Thurston Cocycle and Part of a Formal Riemann-Roch Theorem
Коцикл Ботта-Тeрстона - это $2$-коцикл на группе сохраняющих ориентацию диффеоморфизмов окружности. Вводится и изучается формальный аналог коцикла Ботта-Тeрстона. Формальный коцикл Ботта-Тeрстона - это $2$-коцикл на группе непрерывных $A$-автоморфизмов алгебры $A((t))$ рядов Лорана над коммутативным кольцом $A$ со значениями в группе $A^*$ обратимых элементов кольца $A$. Доказывается, что центральное расширение, заданное формальным коциклом Ботта-Тeрстона, эквивалентно 12-кратной сумме Бэра детерминантного центрального расширения, если $A$ является $\mathbb Q$-алгеброй. В качестве следствия этого результата доказывается часть новой формальной теоремы Римана-Роха. Эта теорема Римана-Роха применяется к окольцованному пространству на отделимой схеме $S$ над полем $\mathbb Q$, где структурный пучок окольцованного пространства локально на схеме $S$ изоморфен пучку $\mathcal O_S((t))$ и склеивающие автоморфизмы непрерывны. Локально на схеме $S$ это окольцованное пространство соответствует проколотой формальной окрестности сечения гладкого морфизма в $U$ относительной размерности $1$, где $U \subset S$ - открытое подмножество.