一类四旋翼无人机基于事件触发的自适应动态表面控制*

Erzhen Shang, Yang Gao, Yang Li, Bo Yu, Jiasen Sun, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang
{"title":"一类四旋翼无人机基于事件触发的自适应动态表面控制*","authors":"Erzhen Shang, Yang Gao, Yang Li, Bo Yu, Jiasen Sun, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang","doi":"10.1109/ICICIP53388.2021.9642199","DOIUrl":null,"url":null,"abstract":"A hybrid adaptive control scheme for quadrotor control system based on event-triggered mechanism is proposed for the trajectory tracking control problem of quadrotor UAV. The high-gain state observer is constructed to estimate the unmeasurable states, then the adaptive radial basis function neural networks (RBFNNs) dynamic surface control strategy is designed to achieve precise tracking control. The event-triggered mechanism is introduced, which is effective reduces the update frequency of the system control signal. The simulation results show that the proposed control scheme can achieve more accurate tracking performance than the traditional backstepping sliding mode control (BSMC) scheme without sacrificing the tracking performance of the control system.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Triggered Based Adaptive Dynamic Surface Control for a Class of Quadrotor UAVs*\",\"authors\":\"Erzhen Shang, Yang Gao, Yang Li, Bo Yu, Jiasen Sun, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang\",\"doi\":\"10.1109/ICICIP53388.2021.9642199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid adaptive control scheme for quadrotor control system based on event-triggered mechanism is proposed for the trajectory tracking control problem of quadrotor UAV. The high-gain state observer is constructed to estimate the unmeasurable states, then the adaptive radial basis function neural networks (RBFNNs) dynamic surface control strategy is designed to achieve precise tracking control. The event-triggered mechanism is introduced, which is effective reduces the update frequency of the system control signal. The simulation results show that the proposed control scheme can achieve more accurate tracking performance than the traditional backstepping sliding mode control (BSMC) scheme without sacrificing the tracking performance of the control system.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对四旋翼无人机的轨迹跟踪控制问题,提出了一种基于事件触发机制的四旋翼控制系统混合自适应控制方案。构造高增益状态观测器估计不可测状态,设计自适应径向基函数神经网络(RBFNNs)动态面控制策略实现精确跟踪控制。引入事件触发机制,有效地降低了系统控制信号的更新频率。仿真结果表明,在不牺牲控制系统跟踪性能的前提下,所提出的控制方案比传统的反步滑模控制(BSMC)方案具有更精确的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-Triggered Based Adaptive Dynamic Surface Control for a Class of Quadrotor UAVs*
A hybrid adaptive control scheme for quadrotor control system based on event-triggered mechanism is proposed for the trajectory tracking control problem of quadrotor UAV. The high-gain state observer is constructed to estimate the unmeasurable states, then the adaptive radial basis function neural networks (RBFNNs) dynamic surface control strategy is designed to achieve precise tracking control. The event-triggered mechanism is introduced, which is effective reduces the update frequency of the system control signal. The simulation results show that the proposed control scheme can achieve more accurate tracking performance than the traditional backstepping sliding mode control (BSMC) scheme without sacrificing the tracking performance of the control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信