双线性盲源分离的矩阵分解:方法、可分离性和条件

Y. Deville
{"title":"双线性盲源分离的矩阵分解:方法、可分离性和条件","authors":"Y. Deville","doi":"10.1109/EUSIPCO.2015.7362714","DOIUrl":null,"url":null,"abstract":"This paper deals with a general class of blind source separation methods for bilinear mixtures, using a structure based on matrix factorization, which models the direct, i.e. mixing, function, thus not requiring the analytical form of the inverse model. This approach also initially does not set restrictions on e.g. statistical independence, nonnegativity or sparsity, but on linear independence of sources and some source products. The separation principle used for adapting the parameters of the above structure consists in fitting the observations with the above direct model. We prove (for two sources at this stage) that this principle ensures separability, i.e. unique decomposition. Associated criteria and algorithms are also described. Performance is illustrated with preprocessed hyperspectral remote sensing data. This also allows us to highlight potential conditioning issues of some practical bilinear matrix factorization (BMF) methods and to suggest how to extend them.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Matrix factorization for bilinear blind source separation: Methods, separability and conditioning\",\"authors\":\"Y. Deville\",\"doi\":\"10.1109/EUSIPCO.2015.7362714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a general class of blind source separation methods for bilinear mixtures, using a structure based on matrix factorization, which models the direct, i.e. mixing, function, thus not requiring the analytical form of the inverse model. This approach also initially does not set restrictions on e.g. statistical independence, nonnegativity or sparsity, but on linear independence of sources and some source products. The separation principle used for adapting the parameters of the above structure consists in fitting the observations with the above direct model. We prove (for two sources at this stage) that this principle ensures separability, i.e. unique decomposition. Associated criteria and algorithms are also described. Performance is illustrated with preprocessed hyperspectral remote sensing data. This also allows us to highlight potential conditioning issues of some practical bilinear matrix factorization (BMF) methods and to suggest how to extend them.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文讨论了一类双线性混合的盲源分离方法,使用基于矩阵分解的结构,该结构对直接(即混合)函数建模,因此不需要逆模型的解析形式。这种方法最初也没有对统计独立性、非负性或稀疏性等设置限制,而是对源和一些源积的线性独立性设置限制。用于调整上述结构参数的分离原理在于用上述直接模型拟合观测值。我们证明(在这个阶段对于两个源)这个原理保证了可分性,即唯一分解。还描述了相关的标准和算法。用预处理的高光谱遥感数据说明了性能。这也使我们能够突出一些实际的双线性矩阵分解(BMF)方法的潜在条件问题,并建议如何扩展它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix factorization for bilinear blind source separation: Methods, separability and conditioning
This paper deals with a general class of blind source separation methods for bilinear mixtures, using a structure based on matrix factorization, which models the direct, i.e. mixing, function, thus not requiring the analytical form of the inverse model. This approach also initially does not set restrictions on e.g. statistical independence, nonnegativity or sparsity, but on linear independence of sources and some source products. The separation principle used for adapting the parameters of the above structure consists in fitting the observations with the above direct model. We prove (for two sources at this stage) that this principle ensures separability, i.e. unique decomposition. Associated criteria and algorithms are also described. Performance is illustrated with preprocessed hyperspectral remote sensing data. This also allows us to highlight potential conditioning issues of some practical bilinear matrix factorization (BMF) methods and to suggest how to extend them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信