工业机器人系统自动化验收测试的应用方法

M. G. D. Santos, Fábio Petrillo, Sylvain Hallé, Yann-Gaël Guéhéneuc
{"title":"工业机器人系统自动化验收测试的应用方法","authors":"M. G. D. Santos, Fábio Petrillo, Sylvain Hallé, Yann-Gaël Guéhéneuc","doi":"10.1109/IRC55401.2022.00066","DOIUrl":null,"url":null,"abstract":"Industrial robotic systems (IRS) are systems composed of industrial robots that automate industrial processes. They execute repetitive tasks with high accuracy, replacing or supporting dangerous jobs. Consequently, a low failure rate is crucial in IRS. However, to the best of our knowledge, there is a lack of automated software testing for industrial robots. In this paper, we describe a test strategy implementation to apply BDD to automate acceptance testing for IRS.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"5 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to apply Automated Acceptance Testing for Industrial Robotic Systems\",\"authors\":\"M. G. D. Santos, Fábio Petrillo, Sylvain Hallé, Yann-Gaël Guéhéneuc\",\"doi\":\"10.1109/IRC55401.2022.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial robotic systems (IRS) are systems composed of industrial robots that automate industrial processes. They execute repetitive tasks with high accuracy, replacing or supporting dangerous jobs. Consequently, a low failure rate is crucial in IRS. However, to the best of our knowledge, there is a lack of automated software testing for industrial robots. In this paper, we describe a test strategy implementation to apply BDD to automate acceptance testing for IRS.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"5 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业机器人系统(IRS)是由工业机器人组成的自动化工业过程的系统。它们以高精度执行重复性任务,取代或支持危险的工作。因此,低故障率对IRS至关重要。然而,据我们所知,目前还缺乏针对工业机器人的自动化软件测试。在本文中,我们描述了一个测试策略实现,将BDD应用于IRS的自动化验收测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to apply Automated Acceptance Testing for Industrial Robotic Systems
Industrial robotic systems (IRS) are systems composed of industrial robots that automate industrial processes. They execute repetitive tasks with high accuracy, replacing or supporting dangerous jobs. Consequently, a low failure rate is crucial in IRS. However, to the best of our knowledge, there is a lack of automated software testing for industrial robots. In this paper, we describe a test strategy implementation to apply BDD to automate acceptance testing for IRS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信