基于本体知识的语义文本摘要方法

Dr.A.Mekala
{"title":"基于本体知识的语义文本摘要方法","authors":"Dr.A.Mekala","doi":"10.46501/ijmtst061122","DOIUrl":null,"url":null,"abstract":"Data mining is a method which finds useful patterns from large amount of data. As vast amounts of\ninformation are created quickly, effective information access becomes an important matter. Particularly for\nimportant domains, such as health check and monetary areas, well-organized recovery of succinct and\nrelated information is highly desired. In this paper we propose a new user query based text summarization\ntechnique that makes use of WordNet, a common information source from Princeton University. Our\nsummarization structure is expressly tuned to recapitulate health care documents.","PeriodicalId":277149,"journal":{"name":"November 2020","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semantic Text Summarization Method using\\nontology based Knowledge\",\"authors\":\"Dr.A.Mekala\",\"doi\":\"10.46501/ijmtst061122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is a method which finds useful patterns from large amount of data. As vast amounts of\\ninformation are created quickly, effective information access becomes an important matter. Particularly for\\nimportant domains, such as health check and monetary areas, well-organized recovery of succinct and\\nrelated information is highly desired. In this paper we propose a new user query based text summarization\\ntechnique that makes use of WordNet, a common information source from Princeton University. Our\\nsummarization structure is expressly tuned to recapitulate health care documents.\",\"PeriodicalId\":277149,\"journal\":{\"name\":\"November 2020\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"November 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46501/ijmtst061122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"November 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46501/ijmtst061122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘是一种从大量数据中发现有用模式的方法。随着大量信息的快速产生,有效的信息访问成为一件重要的事情。特别是对于重要的领域,如健康检查和货币领域,非常需要对简洁和相关的信息进行有组织的恢复。本文提出了一种新的基于用户查询的文本摘要技术,该技术利用了来自普林斯顿大学的常用信息源WordNet。我们的摘要结构被明确地调整为概括医疗保健文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semantic Text Summarization Method using ontology based Knowledge
Data mining is a method which finds useful patterns from large amount of data. As vast amounts of information are created quickly, effective information access becomes an important matter. Particularly for important domains, such as health check and monetary areas, well-organized recovery of succinct and related information is highly desired. In this paper we propose a new user query based text summarization technique that makes use of WordNet, a common information source from Princeton University. Our summarization structure is expressly tuned to recapitulate health care documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信