基于窗口大小的递归典型化数据分析的实时一致性识别

Lucas Lugnani, D. Dotta, M.R.A. Paternina, J. Chow
{"title":"基于窗口大小的递归典型化数据分析的实时一致性识别","authors":"Lucas Lugnani, D. Dotta, M.R.A. Paternina, J. Chow","doi":"10.1109/SGSMA51733.2022.9806012","DOIUrl":null,"url":null,"abstract":"This work presents a data-driven analysis of minimal length necessary for coherency detection considering a recursive form of the typicality-based Data analysis (TDA). It proposes a methodology that encloses the observation of the variance of the typicality (τ) to asses the minimal window length necessary to determine the coherent buses, where the properties of the TDA approach and the groups of buses are iteratively calculated at every new data point sampled. Once the variance of each group reaches a certain value, the minimal window length is determined. Besides, this method preserves the TDA characteristics of using exclusively measurements, not requiring pre-determination of number of groups, group centers or cut-off constants. The method is applied to the well know 2-area Kundur test system, allowing to corroborate its effectiveness and draw conclusions regarding minimal window length dependence on the slowest inter-area mode.","PeriodicalId":256954,"journal":{"name":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Coherency Identification using a Window-Size-Based Recursive Typicality Data Analysis\",\"authors\":\"Lucas Lugnani, D. Dotta, M.R.A. Paternina, J. Chow\",\"doi\":\"10.1109/SGSMA51733.2022.9806012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a data-driven analysis of minimal length necessary for coherency detection considering a recursive form of the typicality-based Data analysis (TDA). It proposes a methodology that encloses the observation of the variance of the typicality (τ) to asses the minimal window length necessary to determine the coherent buses, where the properties of the TDA approach and the groups of buses are iteratively calculated at every new data point sampled. Once the variance of each group reaches a certain value, the minimal window length is determined. Besides, this method preserves the TDA characteristics of using exclusively measurements, not requiring pre-determination of number of groups, group centers or cut-off constants. The method is applied to the well know 2-area Kundur test system, allowing to corroborate its effectiveness and draw conclusions regarding minimal window length dependence on the slowest inter-area mode.\",\"PeriodicalId\":256954,\"journal\":{\"name\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGSMA51733.2022.9806012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGSMA51733.2022.9806012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了考虑到基于典型性的数据分析(TDA)的递归形式的一致性检测所需的最小长度的数据驱动分析。它提出了一种方法,该方法包含对典型性方差(τ)的观察,以评估确定相干总线所需的最小窗口长度,其中TDA方法的属性和总线组在每个新采样数据点上迭代计算。一旦每组的方差达到一定值,就确定最小窗口长度。此外,该方法保留了仅使用测量的TDA特性,不需要预先确定基团数、基团中心或截止常数。将该方法应用于众所周知的2区域Kundur测试系统,验证了其有效性,并得出了关于最小窗口长度依赖于最慢区域间模式的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Coherency Identification using a Window-Size-Based Recursive Typicality Data Analysis
This work presents a data-driven analysis of minimal length necessary for coherency detection considering a recursive form of the typicality-based Data analysis (TDA). It proposes a methodology that encloses the observation of the variance of the typicality (τ) to asses the minimal window length necessary to determine the coherent buses, where the properties of the TDA approach and the groups of buses are iteratively calculated at every new data point sampled. Once the variance of each group reaches a certain value, the minimal window length is determined. Besides, this method preserves the TDA characteristics of using exclusively measurements, not requiring pre-determination of number of groups, group centers or cut-off constants. The method is applied to the well know 2-area Kundur test system, allowing to corroborate its effectiveness and draw conclusions regarding minimal window length dependence on the slowest inter-area mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信