利用卷积神经网络增强手写数字识别的综合研究

Dev Dutt Gowda M J, P. P. Shenoy, H. M. T. Gadiyar
{"title":"利用卷积神经网络增强手写数字识别的综合研究","authors":"Dev Dutt Gowda M J, P. P. Shenoy, H. M. T. Gadiyar","doi":"10.48001/jocnv.2023.111-3","DOIUrl":null,"url":null,"abstract":"The development of a handwritten digit recognition system is the main subject of the discussion. In particular, the Convolution Neural Network (CNN) technique is used in the proposed topic. The MNIST dataset is used to create the model. The “Modified National Institute of Standards and Technology dataset” has 60,000 grayscale photographs, which are tiny squares, comprises of hand-written single digits between digit Zero and digit Nine and each measuring 28 by 28. Placing a handwritten digit picture among any one of ten classes corresponding to integer values from digit Zero to digit Nine, inclusively is the assignment here. The system employs a camera to take photos made up of images produced by the MNIST test data set and samples supplied by other authors. It then continually processes the images and updates the output every 0.5 seconds. Accuracy for top-performing models is typically 99.","PeriodicalId":402315,"journal":{"name":"Journal of Computer Networks and Virtualization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Handwritten Digit Recognition Through Convolutional Neural Networks: A Comprehensive Study\",\"authors\":\"Dev Dutt Gowda M J, P. P. Shenoy, H. M. T. Gadiyar\",\"doi\":\"10.48001/jocnv.2023.111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a handwritten digit recognition system is the main subject of the discussion. In particular, the Convolution Neural Network (CNN) technique is used in the proposed topic. The MNIST dataset is used to create the model. The “Modified National Institute of Standards and Technology dataset” has 60,000 grayscale photographs, which are tiny squares, comprises of hand-written single digits between digit Zero and digit Nine and each measuring 28 by 28. Placing a handwritten digit picture among any one of ten classes corresponding to integer values from digit Zero to digit Nine, inclusively is the assignment here. The system employs a camera to take photos made up of images produced by the MNIST test data set and samples supplied by other authors. It then continually processes the images and updates the output every 0.5 seconds. Accuracy for top-performing models is typically 99.\",\"PeriodicalId\":402315,\"journal\":{\"name\":\"Journal of Computer Networks and Virtualization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Networks and Virtualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48001/jocnv.2023.111-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Networks and Virtualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48001/jocnv.2023.111-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个手写数字识别系统的开发是讨论的主要主题。特别地,卷积神经网络(CNN)技术被用于提出的主题。使用MNIST数据集创建模型。“修改后的国家标准与技术研究所数据集”有6万张灰度照片,这些照片是小正方形,由数字0和数字9之间的手写个位数组成,每个数字的尺寸为28乘28。将一个手写的数字图片放入对应于从0到9的整数值的十个类中的任何一个中,这就是这里的赋值。该系统采用相机拍摄由MNIST测试数据集生成的图像和其他作者提供的样本组成的照片。然后,它继续处理图像,并每0.5秒更新一次输出。表现最好的模型的准确率通常是99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Handwritten Digit Recognition Through Convolutional Neural Networks: A Comprehensive Study
The development of a handwritten digit recognition system is the main subject of the discussion. In particular, the Convolution Neural Network (CNN) technique is used in the proposed topic. The MNIST dataset is used to create the model. The “Modified National Institute of Standards and Technology dataset” has 60,000 grayscale photographs, which are tiny squares, comprises of hand-written single digits between digit Zero and digit Nine and each measuring 28 by 28. Placing a handwritten digit picture among any one of ten classes corresponding to integer values from digit Zero to digit Nine, inclusively is the assignment here. The system employs a camera to take photos made up of images produced by the MNIST test data set and samples supplied by other authors. It then continually processes the images and updates the output every 0.5 seconds. Accuracy for top-performing models is typically 99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信