T. Matsushita, K. Yabuta, T. Tsujikawa, T. Matsushima, M. Arakawa, K. Kurita
{"title":"锂离子二次电池三维热仿真模型的建立","authors":"T. Matsushita, K. Yabuta, T. Tsujikawa, T. Matsushima, M. Arakawa, K. Kurita","doi":"10.1109/INTLEC.2008.4664071","DOIUrl":null,"url":null,"abstract":"We are developing a large-capacity lithium-ion secondary battery as a backup power supply for next generation communications. The lithium-ion secondary battery has the advantage of very high energy density. However, the temperature of the battery rises when overcharge or internal short-circuit occurs. If the temperature of the battery exceeds a constant value, there is a danger that the positive electrodepsilas active material may decompose, oxygen may be discharged, the electrolysis liquid may burn, and rapid ignition (thermal runaway) may occur. In general, lithium-ion secondary batteries come in three shapes (cylinder, flat, and accumulating). A structural examination of the temperature increase is indispensable to develop a large-capacity lithium-ion secondary battery. We developed a highly accurate three-dimensional thermal simulation model using the finite-element method.","PeriodicalId":431368,"journal":{"name":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Construction of three-dimensional thermal simulation model of lithium-ion secondary battery\",\"authors\":\"T. Matsushita, K. Yabuta, T. Tsujikawa, T. Matsushima, M. Arakawa, K. Kurita\",\"doi\":\"10.1109/INTLEC.2008.4664071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are developing a large-capacity lithium-ion secondary battery as a backup power supply for next generation communications. The lithium-ion secondary battery has the advantage of very high energy density. However, the temperature of the battery rises when overcharge or internal short-circuit occurs. If the temperature of the battery exceeds a constant value, there is a danger that the positive electrodepsilas active material may decompose, oxygen may be discharged, the electrolysis liquid may burn, and rapid ignition (thermal runaway) may occur. In general, lithium-ion secondary batteries come in three shapes (cylinder, flat, and accumulating). A structural examination of the temperature increase is indispensable to develop a large-capacity lithium-ion secondary battery. We developed a highly accurate three-dimensional thermal simulation model using the finite-element method.\",\"PeriodicalId\":431368,\"journal\":{\"name\":\"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2008.4664071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2008.4664071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of three-dimensional thermal simulation model of lithium-ion secondary battery
We are developing a large-capacity lithium-ion secondary battery as a backup power supply for next generation communications. The lithium-ion secondary battery has the advantage of very high energy density. However, the temperature of the battery rises when overcharge or internal short-circuit occurs. If the temperature of the battery exceeds a constant value, there is a danger that the positive electrodepsilas active material may decompose, oxygen may be discharged, the electrolysis liquid may burn, and rapid ignition (thermal runaway) may occur. In general, lithium-ion secondary batteries come in three shapes (cylinder, flat, and accumulating). A structural examination of the temperature increase is indispensable to develop a large-capacity lithium-ion secondary battery. We developed a highly accurate three-dimensional thermal simulation model using the finite-element method.