基于bnn的实时感知推理自适应能量调度的原位自供电智能视觉系统

Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo
{"title":"基于bnn的实时感知推理自适应能量调度的原位自供电智能视觉系统","authors":"Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo","doi":"10.1145/3489517.3530554","DOIUrl":null,"url":null,"abstract":"This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ self-powered intelligent vision system with inference-adaptive energy scheduling for BNN-based always-on perception\",\"authors\":\"Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo\",\"doi\":\"10.1145/3489517.3530554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于原位自供电bnn的智能视觉感知系统,该系统利用必不可少的图像传感器本身收集光能。采用轻量级的基于占空比的能量调度方法,将收集到的能量逐层分配到低功耗的BNN计算模块中。提出了一种软硬件协同设计方法,利用BNN的分层容错性以及计算电路的计算误差和能耗特性来确定能量调度器的参数,实现了自供电BNN推理的高能效。仿真结果表明,采用本文提出的推理自适应能量调度方法,当收获功率为1μW时,自供电的MNIST分类任务可以以4 fps的帧率执行,同时在二进制LeNet-5网络上保证了至少90%的推理准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ self-powered intelligent vision system with inference-adaptive energy scheduling for BNN-based always-on perception
This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信