Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo
{"title":"基于bnn的实时感知推理自适应能量调度的原位自供电智能视觉系统","authors":"Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo","doi":"10.1145/3489517.3530554","DOIUrl":null,"url":null,"abstract":"This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ self-powered intelligent vision system with inference-adaptive energy scheduling for BNN-based always-on perception\",\"authors\":\"Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo\",\"doi\":\"10.1145/3489517.3530554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-situ self-powered intelligent vision system with inference-adaptive energy scheduling for BNN-based always-on perception
This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.