{"title":"基于恒模准则和人工免疫网络的盲均衡方法","authors":"R. Attux, L. Castro, F. V. Zuben, J. Romano","doi":"10.1109/NNSP.2003.1318083","DOIUrl":null,"url":null,"abstract":"We propose a new paradigm for optimal blind IIR equalization using the well-known constant modulus criterion and an artificial immune network. Tests in three different scenarios reveal the efficiency of the proposal, attested by excellent global convergence rates (100% in two cases) and adaptation patterns.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A paradigm for blind IIR equalization using the constant modulus criterion and an artificial immune network\",\"authors\":\"R. Attux, L. Castro, F. V. Zuben, J. Romano\",\"doi\":\"10.1109/NNSP.2003.1318083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new paradigm for optimal blind IIR equalization using the well-known constant modulus criterion and an artificial immune network. Tests in three different scenarios reveal the efficiency of the proposal, attested by excellent global convergence rates (100% in two cases) and adaptation patterns.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A paradigm for blind IIR equalization using the constant modulus criterion and an artificial immune network
We propose a new paradigm for optimal blind IIR equalization using the well-known constant modulus criterion and an artificial immune network. Tests in three different scenarios reveal the efficiency of the proposal, attested by excellent global convergence rates (100% in two cases) and adaptation patterns.