随机抽样下离散系统的镇定

Junli Wu, H. Karimi, P. Shi
{"title":"随机抽样下离散系统的镇定","authors":"Junli Wu, H. Karimi, P. Shi","doi":"10.1109/ICIEA.2012.6360955","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the stabilization problem of discrete-time systems with stochastic sampling. It is assumed that there are a single-rate sampling in the plant input and two stochastic sampling rates in the controller input whose occurrence probabilities are given constants and satisfy a Bernoulli distribution. By Lyapunov function approach, a new sufficient condition is presented for the mean square asymptotic stability of the system. Based on this, the design procedure for stabilization controllers is proposed. Finally, an example is given to demonstrate the effectiveness of the proposed techniques.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of discrete-time systems with stochastic sampling\",\"authors\":\"Junli Wu, H. Karimi, P. Shi\",\"doi\":\"10.1109/ICIEA.2012.6360955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the stabilization problem of discrete-time systems with stochastic sampling. It is assumed that there are a single-rate sampling in the plant input and two stochastic sampling rates in the controller input whose occurrence probabilities are given constants and satisfy a Bernoulli distribution. By Lyapunov function approach, a new sufficient condition is presented for the mean square asymptotic stability of the system. Based on this, the design procedure for stabilization controllers is proposed. Finally, an example is given to demonstrate the effectiveness of the proposed techniques.\",\"PeriodicalId\":220747,\"journal\":{\"name\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2012.6360955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究具有随机抽样的离散系统的镇定问题。假设在对象输入中有一个单速率采样,在控制器输入中有两个随机采样,它们的发生概率给定常数并满足伯努利分布。利用Lyapunov函数方法,给出了系统均方渐近稳定的一个新的充分条件。在此基础上,提出了稳定控制器的设计步骤。最后,通过一个算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization of discrete-time systems with stochastic sampling
This paper is concerned with the stabilization problem of discrete-time systems with stochastic sampling. It is assumed that there are a single-rate sampling in the plant input and two stochastic sampling rates in the controller input whose occurrence probabilities are given constants and satisfy a Bernoulli distribution. By Lyapunov function approach, a new sufficient condition is presented for the mean square asymptotic stability of the system. Based on this, the design procedure for stabilization controllers is proposed. Finally, an example is given to demonstrate the effectiveness of the proposed techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信