近似不相交性满足独立分量分析的盲源分离准则

M. Souden, Jason Wung, B. Juang
{"title":"近似不相交性满足独立分量分析的盲源分离准则","authors":"M. Souden, Jason Wung, B. Juang","doi":"10.1109/GlobalSIP.2014.7032174","DOIUrl":null,"url":null,"abstract":"This paper proposes a sparseness-based blind source separation (BSS) method. In contrast to conventional approaches, we exploit the sparseness property and the ensuing approximate disjointness of the competing audio signals when represented in the short time Fourier transform domain to determine the linear separating matrix such that its outputs are maximally disjoint. By doing so, we deduce an iterative gradient descent to estimate the optimal separation matrix. Interestingly, the resulting optimization problem is shown to have strong links with independent component analysis using higher order statistics, and shares some similarity with non-stationarity-based BSS. The purpose of the proposed study is to provide some insight into the connection between the seemingly different sparseness and independence-based BSS criteria.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A blind source separation criterion where approximate disjointness meets independent component analysis\",\"authors\":\"M. Souden, Jason Wung, B. Juang\",\"doi\":\"10.1109/GlobalSIP.2014.7032174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a sparseness-based blind source separation (BSS) method. In contrast to conventional approaches, we exploit the sparseness property and the ensuing approximate disjointness of the competing audio signals when represented in the short time Fourier transform domain to determine the linear separating matrix such that its outputs are maximally disjoint. By doing so, we deduce an iterative gradient descent to estimate the optimal separation matrix. Interestingly, the resulting optimization problem is shown to have strong links with independent component analysis using higher order statistics, and shares some similarity with non-stationarity-based BSS. The purpose of the proposed study is to provide some insight into the connection between the seemingly different sparseness and independence-based BSS criteria.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于稀疏度的盲源分离方法。与传统方法相反,我们利用在短时傅里叶变换域中表示的竞争音频信号的稀疏性和随之而来的近似不相交性来确定线性分离矩阵,使其输出最大不相交。通过这样做,我们推导出一个迭代梯度下降来估计最优分离矩阵。有趣的是,由此产生的优化问题与使用高阶统计量的独立成分分析有很强的联系,并且与基于非平稳性的BSS有一些相似之处。本研究的目的是为看似不同的稀疏性和基于独立性的BSS标准之间的联系提供一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A blind source separation criterion where approximate disjointness meets independent component analysis
This paper proposes a sparseness-based blind source separation (BSS) method. In contrast to conventional approaches, we exploit the sparseness property and the ensuing approximate disjointness of the competing audio signals when represented in the short time Fourier transform domain to determine the linear separating matrix such that its outputs are maximally disjoint. By doing so, we deduce an iterative gradient descent to estimate the optimal separation matrix. Interestingly, the resulting optimization problem is shown to have strong links with independent component analysis using higher order statistics, and shares some similarity with non-stationarity-based BSS. The purpose of the proposed study is to provide some insight into the connection between the seemingly different sparseness and independence-based BSS criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信