估计客户进行交易概率的模型

A. Sayar, Tunaban Bozkan, Tuna Çakar, Seyit Ertugrul
{"title":"估计客户进行交易概率的模型","authors":"A. Sayar, Tunaban Bozkan, Tuna Çakar, Seyit Ertugrul","doi":"10.1109/UBMK55850.2022.9919439","DOIUrl":null,"url":null,"abstract":"In this study, it is aimed to estimate the probability of a customer who comes to the institution for the first time to make a transaction in the next 3 months, using data-driven machine learning models, in order to provide financing to the seller company by assigning the receivables arising from the sale of goods and services in a company actively operating in the factoring sector. Accordingly, it was aimed to directly contribute to the transaction volume on a business basis by acting and taking action with more effective, efficient and correct approaches by finding high-potential and low-potential customers. In this context, provided by KKB (Credit Registration Bureau); The data set to he used in machine learning models was created with feature engineering and exploratory data analysis, using the Risk, Mersis, GIB information of the prospective customers and the historical information of the customers, check issuers, customer representatives and branches kept in the database. Since the leads coming to the institution are in two different types of organizations (Individual and Legal), two different forecasting models were applied. Multiple classification models were tried, and the highest F1-Score of 86% for private companies was obtained with the Random Forest model, and the highest F1- Score for commercial companies was obtained with the Random Forest model with 82%.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for Estimating the Probability of a Customer to Have a Transaction\",\"authors\":\"A. Sayar, Tunaban Bozkan, Tuna Çakar, Seyit Ertugrul\",\"doi\":\"10.1109/UBMK55850.2022.9919439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, it is aimed to estimate the probability of a customer who comes to the institution for the first time to make a transaction in the next 3 months, using data-driven machine learning models, in order to provide financing to the seller company by assigning the receivables arising from the sale of goods and services in a company actively operating in the factoring sector. Accordingly, it was aimed to directly contribute to the transaction volume on a business basis by acting and taking action with more effective, efficient and correct approaches by finding high-potential and low-potential customers. In this context, provided by KKB (Credit Registration Bureau); The data set to he used in machine learning models was created with feature engineering and exploratory data analysis, using the Risk, Mersis, GIB information of the prospective customers and the historical information of the customers, check issuers, customer representatives and branches kept in the database. Since the leads coming to the institution are in two different types of organizations (Individual and Legal), two different forecasting models were applied. Multiple classification models were tried, and the highest F1-Score of 86% for private companies was obtained with the Random Forest model, and the highest F1- Score for commercial companies was obtained with the Random Forest model with 82%.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,旨在利用数据驱动的机器学习模型,估计未来3个月内首次来到该机构进行交易的客户的概率,以便通过分配积极经营保理行业的公司销售商品和服务产生的应收账款,为卖方公司提供融资。因此,它的目的是通过寻找高潜力和低潜力客户,以更有效,高效和正确的方式采取行动,直接促进业务基础上的交易量。在此背景下,由KKB(信用登记局)提供;机器学习模型中使用的数据集是通过特征工程和探索性数据分析创建的,使用了数据库中保存的潜在客户的Risk、Mersis、GIB信息以及客户、支票发行方、客户代表和分支机构的历史信息。由于来到机构的领导来自两种不同类型的组织(个人和法律),因此应用了两种不同的预测模型。对多个分类模型进行了尝试,随机森林模型对民营企业的F1-Score最高,为86%,对商业企业的F1-Score最高,为82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model for Estimating the Probability of a Customer to Have a Transaction
In this study, it is aimed to estimate the probability of a customer who comes to the institution for the first time to make a transaction in the next 3 months, using data-driven machine learning models, in order to provide financing to the seller company by assigning the receivables arising from the sale of goods and services in a company actively operating in the factoring sector. Accordingly, it was aimed to directly contribute to the transaction volume on a business basis by acting and taking action with more effective, efficient and correct approaches by finding high-potential and low-potential customers. In this context, provided by KKB (Credit Registration Bureau); The data set to he used in machine learning models was created with feature engineering and exploratory data analysis, using the Risk, Mersis, GIB information of the prospective customers and the historical information of the customers, check issuers, customer representatives and branches kept in the database. Since the leads coming to the institution are in two different types of organizations (Individual and Legal), two different forecasting models were applied. Multiple classification models were tried, and the highest F1-Score of 86% for private companies was obtained with the Random Forest model, and the highest F1- Score for commercial companies was obtained with the Random Forest model with 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信