机器人SLAM:从雾计算和移动边缘计算的角度回顾

Swarnava Dey, A. Mukherjee
{"title":"机器人SLAM:从雾计算和移动边缘计算的角度回顾","authors":"Swarnava Dey, A. Mukherjee","doi":"10.1145/3004010.3004032","DOIUrl":null,"url":null,"abstract":"Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.","PeriodicalId":406787,"journal":{"name":"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Robotic SLAM: a Review from Fog Computing and Mobile Edge Computing Perspective\",\"authors\":\"Swarnava Dey, A. Mukherjee\",\"doi\":\"10.1145/3004010.3004032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.\",\"PeriodicalId\":406787,\"journal\":{\"name\":\"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3004010.3004032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3004010.3004032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

在过去的几年里,解决移动机器人的同时定位和地图绘制(SLAM)问题引起了人们的广泛关注。这些能量受限的移动机器人缺乏强大的机载计算能力,而计算云访问技术的快速发展为几个云机器人平台的发展奠定了基础,这些平台使计算成本高昂的机器人算法能够并行执行,特别是涉及多个机器人。在这项工作中,云机器人概念被扩展到包括当前网络边缘节点和云计算的重点。参考ETSI“移动边缘计算”倡议和OpenFog联盟的“OpenFog架构”,讨论了使用边缘节点在远程云或本地机器人集群上进行计算卸载的要求和优势。修改并实现了SLAM的粒子滤波算法,用于在多层边缘+云设置中卸载。在此基础上,提出了一种卸载决策模型,并通过实验和结果验证了所提出的动态卸载方案比静态卸载策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic SLAM: a Review from Fog Computing and Mobile Edge Computing Perspective
Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信