一种新的无线传感器网络节点定位与运动分析算法

Shancang Li, Deyun Zhang, Zhenyu Yang, N. Chang
{"title":"一种新的无线传感器网络节点定位与运动分析算法","authors":"Shancang Li, Deyun Zhang, Zhenyu Yang, N. Chang","doi":"10.1109/COASE.2006.326945","DOIUrl":null,"url":null,"abstract":"Accurate, distributed localization and motion analysis algorithms are needed for a variety of mobile wireless sensor network applications. The research on mobile nodes localization and motion analysis in real time will continue to grow as sensor networks are deployed in large numbers and as applications become more varied. In this paper, we introduce a localization and motion analysis parameter estimation algorithm in mobile wireless sensor networks by using pseudo-linear-Kalman filtering, maximum likelihood estimator (MLE) and extended Kalman filter (EKF) techniques. The Cramer-Rao bound (CRB) is also given in this study. Simulations show that the algorithm performs well even with noisy RSS and TOA estimates in the sensors. We apply MLE, EKF and the EKF-based estimator to demonstrate the best bias and variance performance, but the algorithm may not be robust for all random sensor deployments.","PeriodicalId":116108,"journal":{"name":"2006 IEEE International Conference on Automation Science and Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Algorithm for Node Localization and Motion Analysis in Wireless Sensor Networks\",\"authors\":\"Shancang Li, Deyun Zhang, Zhenyu Yang, N. Chang\",\"doi\":\"10.1109/COASE.2006.326945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate, distributed localization and motion analysis algorithms are needed for a variety of mobile wireless sensor network applications. The research on mobile nodes localization and motion analysis in real time will continue to grow as sensor networks are deployed in large numbers and as applications become more varied. In this paper, we introduce a localization and motion analysis parameter estimation algorithm in mobile wireless sensor networks by using pseudo-linear-Kalman filtering, maximum likelihood estimator (MLE) and extended Kalman filter (EKF) techniques. The Cramer-Rao bound (CRB) is also given in this study. Simulations show that the algorithm performs well even with noisy RSS and TOA estimates in the sensors. We apply MLE, EKF and the EKF-based estimator to demonstrate the best bias and variance performance, but the algorithm may not be robust for all random sensor deployments.\",\"PeriodicalId\":116108,\"journal\":{\"name\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2006.326945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2006.326945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

各种移动无线传感器网络应用需要精确、分布式的定位和运动分析算法。随着传感器网络的大量部署和应用的多样化,对移动节点定位和实时运动分析的研究将继续发展。本文介绍了一种基于伪线性卡尔曼滤波、极大似然估计和扩展卡尔曼滤波技术的移动无线传感器网络定位和运动分析参数估计算法。本文还给出了Cramer-Rao界(CRB)。仿真结果表明,该算法即使在传感器中有噪声的RSS和TOA估计情况下也具有良好的性能。我们应用MLE、EKF和基于EKF的估计器来展示最佳的偏差和方差性能,但该算法可能并非对所有随机传感器部署都具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Algorithm for Node Localization and Motion Analysis in Wireless Sensor Networks
Accurate, distributed localization and motion analysis algorithms are needed for a variety of mobile wireless sensor network applications. The research on mobile nodes localization and motion analysis in real time will continue to grow as sensor networks are deployed in large numbers and as applications become more varied. In this paper, we introduce a localization and motion analysis parameter estimation algorithm in mobile wireless sensor networks by using pseudo-linear-Kalman filtering, maximum likelihood estimator (MLE) and extended Kalman filter (EKF) techniques. The Cramer-Rao bound (CRB) is also given in this study. Simulations show that the algorithm performs well even with noisy RSS and TOA estimates in the sensors. We apply MLE, EKF and the EKF-based estimator to demonstrate the best bias and variance performance, but the algorithm may not be robust for all random sensor deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信