55纳米技术中神经形态尖峰检测的Sub-nJ / Decision Schmitt触发比较器

João F. Sulzbach, Siqi Wang, Zalfa Jouni, A. Benlarbi-Delai, G. Klisnick, Pietro M. Ferreira
{"title":"55纳米技术中神经形态尖峰检测的Sub-nJ / Decision Schmitt触发比较器","authors":"João F. Sulzbach, Siqi Wang, Zalfa Jouni, A. Benlarbi-Delai, G. Klisnick, Pietro M. Ferreira","doi":"10.1109/RTSI55261.2022.9905228","DOIUrl":null,"url":null,"abstract":"Neuromorphic circuits are known for their promising ultra-low power AI applications in IoT field. However, sub-100 mV supply voltages hamper digital-enable devices due to their non-discrete and highly non-linear response. In this paper, a low-power Smith trigger comparator is proposed to interface spiking analog eNeurons and digital circuits. To this end, a subthreshold bias and BiCMOS 55 nm node technology are chosen. The proposed comparator is post-layout validated, having a maximum decision frequency of 400 kHz and an energy efficiency of 747 aJ/spike. This performance is compatible with existing artificial neurons.","PeriodicalId":261718,"journal":{"name":"2022 IEEE 7th Forum on Research and Technologies for Society and Industry Innovation (RTSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-nJ per Decision Schmitt Trigger Comparator for Neuromorphic Spike Detection in 55 nm Technology\",\"authors\":\"João F. Sulzbach, Siqi Wang, Zalfa Jouni, A. Benlarbi-Delai, G. Klisnick, Pietro M. Ferreira\",\"doi\":\"10.1109/RTSI55261.2022.9905228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic circuits are known for their promising ultra-low power AI applications in IoT field. However, sub-100 mV supply voltages hamper digital-enable devices due to their non-discrete and highly non-linear response. In this paper, a low-power Smith trigger comparator is proposed to interface spiking analog eNeurons and digital circuits. To this end, a subthreshold bias and BiCMOS 55 nm node technology are chosen. The proposed comparator is post-layout validated, having a maximum decision frequency of 400 kHz and an energy efficiency of 747 aJ/spike. This performance is compatible with existing artificial neurons.\",\"PeriodicalId\":261718,\"journal\":{\"name\":\"2022 IEEE 7th Forum on Research and Technologies for Society and Industry Innovation (RTSI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th Forum on Research and Technologies for Society and Industry Innovation (RTSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSI55261.2022.9905228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th Forum on Research and Technologies for Society and Industry Innovation (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSI55261.2022.9905228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经形态电路在物联网领域的超低功耗人工智能应用前景广阔。然而,低于100 mV的电源电压由于其非离散和高度非线性响应而阻碍了数字使能器件。本文提出了一种低功耗史密斯触发比较器,用于连接尖峰模拟神经元和数字电路。为此,我们选择了亚阈值偏置和BiCMOS 55nm节点技术。所提出的比较器经过布局后验证,最大决策频率为400 kHz,能量效率为747 aJ/spike。这种性能与现有的人工神经元兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-nJ per Decision Schmitt Trigger Comparator for Neuromorphic Spike Detection in 55 nm Technology
Neuromorphic circuits are known for their promising ultra-low power AI applications in IoT field. However, sub-100 mV supply voltages hamper digital-enable devices due to their non-discrete and highly non-linear response. In this paper, a low-power Smith trigger comparator is proposed to interface spiking analog eNeurons and digital circuits. To this end, a subthreshold bias and BiCMOS 55 nm node technology are chosen. The proposed comparator is post-layout validated, having a maximum decision frequency of 400 kHz and an energy efficiency of 747 aJ/spike. This performance is compatible with existing artificial neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信