SPMario:使用面向I/ o的GPU调度来扩展MapReduce

Yang Liu, Hung-Wei Tseng, S. Swanson
{"title":"SPMario:使用面向I/ o的GPU调度来扩展MapReduce","authors":"Yang Liu, Hung-Wei Tseng, S. Swanson","doi":"10.1109/ICCD.2016.7753309","DOIUrl":null,"url":null,"abstract":"The popularity of GPUs in general purpose computation has prompted efforts to scale up MapReduce systems with GPUs, but lack of efficient I/O handling results in underutilization of shared system resources in existing systems. This paper presents SPMario, a scale-up GPU MapReduce framework to speed up job execution and boost utilization of system resources with the new I/O Oriented Scheduling. The evaluation on a set of representative benchmarks against a highly-optimized baseline system shows that for the single job cases, SPMario can speedup job execution by up to 2.28×, and boost GPU utilization by 2.12× and 2.51× for I/O utilization. When scheduling two jobs together, I/O Oriented Scheduling outperforms round-robin scheduling by up to 13.54% in total execution time, and by up to 12.27% and 14.92% in GPU and I/O utilization, respectively.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SPMario: Scale up MapReduce with I/O-Oriented Scheduling for the GPU\",\"authors\":\"Yang Liu, Hung-Wei Tseng, S. Swanson\",\"doi\":\"10.1109/ICCD.2016.7753309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of GPUs in general purpose computation has prompted efforts to scale up MapReduce systems with GPUs, but lack of efficient I/O handling results in underutilization of shared system resources in existing systems. This paper presents SPMario, a scale-up GPU MapReduce framework to speed up job execution and boost utilization of system resources with the new I/O Oriented Scheduling. The evaluation on a set of representative benchmarks against a highly-optimized baseline system shows that for the single job cases, SPMario can speedup job execution by up to 2.28×, and boost GPU utilization by 2.12× and 2.51× for I/O utilization. When scheduling two jobs together, I/O Oriented Scheduling outperforms round-robin scheduling by up to 13.54% in total execution time, and by up to 12.27% and 14.92% in GPU and I/O utilization, respectively.\",\"PeriodicalId\":297899,\"journal\":{\"name\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2016.7753309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

gpu在通用计算中的普及促使人们努力用gpu扩展MapReduce系统,但缺乏有效的I/O处理导致现有系统中共享系统资源的利用不足。本文介绍了SPMario,一个扩展GPU MapReduce框架,通过新的面向I/O调度来加快作业执行速度并提高系统资源利用率。在高度优化的基准系统上对一组代表性基准的评估表明,对于单个作业情况,SPMario可以将作业执行速度提高2.28倍,将GPU利用率提高2.12倍,I/O利用率提高2.51倍。当同时调度两个作业时,面向I/O调度在总执行时间上比循环调度高出13.54%,在GPU和I/O利用率上分别高出12.27%和14.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPMario: Scale up MapReduce with I/O-Oriented Scheduling for the GPU
The popularity of GPUs in general purpose computation has prompted efforts to scale up MapReduce systems with GPUs, but lack of efficient I/O handling results in underutilization of shared system resources in existing systems. This paper presents SPMario, a scale-up GPU MapReduce framework to speed up job execution and boost utilization of system resources with the new I/O Oriented Scheduling. The evaluation on a set of representative benchmarks against a highly-optimized baseline system shows that for the single job cases, SPMario can speedup job execution by up to 2.28×, and boost GPU utilization by 2.12× and 2.51× for I/O utilization. When scheduling two jobs together, I/O Oriented Scheduling outperforms round-robin scheduling by up to 13.54% in total execution time, and by up to 12.27% and 14.92% in GPU and I/O utilization, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信