{"title":"增强现实x射线视觉的空间感知改进","authors":"Ben Avery, C. Sandor, B. Thomas","doi":"10.1109/VR.2009.4811002","DOIUrl":null,"url":null,"abstract":"Augmented reality x-ray vision allows users to see through walls and view real occluded objects and locations. We present an augmented reality x-ray vision system that employs multiple view modes to support new visualizations that provide depth cues and spatial awareness to users. The edge overlay visualization provides depth cues to make hidden objects appear to be behind walls, rather than floating in front of them. Utilizing this edge overlay, the tunnel cut-out visualization provides details about occluding layers between the user and remote location. Inherent limitations of these visualizations are addressed by our addition of view modes allowing the user to obtain additional detail by zooming in, or an overview of the environment via an overhead exocentric view.","PeriodicalId":433266,"journal":{"name":"2009 IEEE Virtual Reality Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Improving Spatial Perception for Augmented Reality X-Ray Vision\",\"authors\":\"Ben Avery, C. Sandor, B. Thomas\",\"doi\":\"10.1109/VR.2009.4811002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented reality x-ray vision allows users to see through walls and view real occluded objects and locations. We present an augmented reality x-ray vision system that employs multiple view modes to support new visualizations that provide depth cues and spatial awareness to users. The edge overlay visualization provides depth cues to make hidden objects appear to be behind walls, rather than floating in front of them. Utilizing this edge overlay, the tunnel cut-out visualization provides details about occluding layers between the user and remote location. Inherent limitations of these visualizations are addressed by our addition of view modes allowing the user to obtain additional detail by zooming in, or an overview of the environment via an overhead exocentric view.\",\"PeriodicalId\":433266,\"journal\":{\"name\":\"2009 IEEE Virtual Reality Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Virtual Reality Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2009.4811002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Virtual Reality Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2009.4811002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Spatial Perception for Augmented Reality X-Ray Vision
Augmented reality x-ray vision allows users to see through walls and view real occluded objects and locations. We present an augmented reality x-ray vision system that employs multiple view modes to support new visualizations that provide depth cues and spatial awareness to users. The edge overlay visualization provides depth cues to make hidden objects appear to be behind walls, rather than floating in front of them. Utilizing this edge overlay, the tunnel cut-out visualization provides details about occluding layers between the user and remote location. Inherent limitations of these visualizations are addressed by our addition of view modes allowing the user to obtain additional detail by zooming in, or an overview of the environment via an overhead exocentric view.