具有显式管理内存的异构多核处理器的MapReduce重构

Anastasios Papagiannis, Dimitrios S. Nikolopoulos
{"title":"具有显式管理内存的异构多核处理器的MapReduce重构","authors":"Anastasios Papagiannis, Dimitrios S. Nikolopoulos","doi":"10.1109/ICPP.2010.21","DOIUrl":null,"url":null,"abstract":"This paper presents a new design and an implementation of the runtime system of MapReduce for heterogeneous multicore processors with explicitly managed local memories. We advance the state of the art in runtime support for MapReduce using five instruments: (1) A new multi-threaded, event-driven controller for task instantiation, task scheduling, synchronization, and bulk-synchronous execution of MapReduce stages. The controller improves utilization of control efficient cores, minimizes control overhead in the runtime system, and overlaps task instantiation with task scheduling on compute-efficient cores. (2) An implicit partitioning scheme which eliminates redundant memory copies. (3) An adaptive memory management scheme which combines efficient memory preallocation for applications with statically known output volume with dynamic allocation using runahead tasks for applications with statically unknown output volume. (4) An optimized quick-sort/merge-sort scheme which reduces the critical path length of merge-sort. (5) An optimized execution scheme which avoids redundant data transfers to and from local stores in applications that emit keys with the same value. Put together, these techniques accelerate representative MapReduce workloads by a factor of 1.81x (geometric mean) compared to a reference design that represents the state of the art.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Rearchitecting MapReduce for Heterogeneous Multicore Processors with Explicitly Managed Memories\",\"authors\":\"Anastasios Papagiannis, Dimitrios S. Nikolopoulos\",\"doi\":\"10.1109/ICPP.2010.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new design and an implementation of the runtime system of MapReduce for heterogeneous multicore processors with explicitly managed local memories. We advance the state of the art in runtime support for MapReduce using five instruments: (1) A new multi-threaded, event-driven controller for task instantiation, task scheduling, synchronization, and bulk-synchronous execution of MapReduce stages. The controller improves utilization of control efficient cores, minimizes control overhead in the runtime system, and overlaps task instantiation with task scheduling on compute-efficient cores. (2) An implicit partitioning scheme which eliminates redundant memory copies. (3) An adaptive memory management scheme which combines efficient memory preallocation for applications with statically known output volume with dynamic allocation using runahead tasks for applications with statically unknown output volume. (4) An optimized quick-sort/merge-sort scheme which reduces the critical path length of merge-sort. (5) An optimized execution scheme which avoids redundant data transfers to and from local stores in applications that emit keys with the same value. Put together, these techniques accelerate representative MapReduce workloads by a factor of 1.81x (geometric mean) compared to a reference design that represents the state of the art.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种针对异构多核处理器的MapReduce运行时系统的新设计和实现,该系统具有显式管理的本地内存。我们使用五种工具在运行时支持MapReduce方面提升了技术水平:(1)一个新的多线程、事件驱动的控制器,用于任务实例化、任务调度、同步和MapReduce阶段的批量同步执行。该控制器提高了控制高效核的利用率,最小化了运行时系统中的控制开销,并将任务实例化与任务调度重叠在计算高效核上。(2)隐式分区方案,消除冗余内存副本。(3)一种自适应内存管理方案,该方案将静态输出量已知的应用程序的有效内存预分配与静态输出量未知的应用程序的动态内存分配相结合。(4)优化快速排序/归并排序方案,减少归并排序的关键路径长度。(5)优化的执行方案,避免在发出相同值的键的应用程序中向本地存储传输冗余数据。总的来说,与代表当前技术水平的参考设计相比,这些技术将代表性的MapReduce工作负载加速了1.81倍(几何平均值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearchitecting MapReduce for Heterogeneous Multicore Processors with Explicitly Managed Memories
This paper presents a new design and an implementation of the runtime system of MapReduce for heterogeneous multicore processors with explicitly managed local memories. We advance the state of the art in runtime support for MapReduce using five instruments: (1) A new multi-threaded, event-driven controller for task instantiation, task scheduling, synchronization, and bulk-synchronous execution of MapReduce stages. The controller improves utilization of control efficient cores, minimizes control overhead in the runtime system, and overlaps task instantiation with task scheduling on compute-efficient cores. (2) An implicit partitioning scheme which eliminates redundant memory copies. (3) An adaptive memory management scheme which combines efficient memory preallocation for applications with statically known output volume with dynamic allocation using runahead tasks for applications with statically unknown output volume. (4) An optimized quick-sort/merge-sort scheme which reduces the critical path length of merge-sort. (5) An optimized execution scheme which avoids redundant data transfers to and from local stores in applications that emit keys with the same value. Put together, these techniques accelerate representative MapReduce workloads by a factor of 1.81x (geometric mean) compared to a reference design that represents the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信