基于动态神经网络时间序列模型的原子钟数据异常监测方法研究

Xiang Wang, Huijie Song, Shanshan Bai, Ting Zeng, Shuhong Zhao, Wenjun Wu, Wei Li, Y. Liu
{"title":"基于动态神经网络时间序列模型的原子钟数据异常监测方法研究","authors":"Xiang Wang, Huijie Song, Shanshan Bai, Ting Zeng, Shuhong Zhao, Wenjun Wu, Wei Li, Y. Liu","doi":"10.1109/FCS.2016.7546764","DOIUrl":null,"url":null,"abstract":"Atomic clock data of collected in laboratory has the characteristic of time series, so the atomic clock data forecasting algorithm based on the model of dynamic neural network time series-NAR (Nonparametric regression) is proposed according to the study of dynamic neural network algorithm, And the monitored method of atomic clock data exception is designed according to this algorithm. The monitored method was verified by cesium atomic clock data, results show that the proposed method in this paper is feasible, it can be monitored in real time and effectively that the possible phase jump of atomic clock correlation data.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of the monitored method of atomic clock data exception based on the model of dynamic neural network time series-NAR\",\"authors\":\"Xiang Wang, Huijie Song, Shanshan Bai, Ting Zeng, Shuhong Zhao, Wenjun Wu, Wei Li, Y. Liu\",\"doi\":\"10.1109/FCS.2016.7546764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic clock data of collected in laboratory has the characteristic of time series, so the atomic clock data forecasting algorithm based on the model of dynamic neural network time series-NAR (Nonparametric regression) is proposed according to the study of dynamic neural network algorithm, And the monitored method of atomic clock data exception is designed according to this algorithm. The monitored method was verified by cesium atomic clock data, results show that the proposed method in this paper is feasible, it can be monitored in real time and effectively that the possible phase jump of atomic clock correlation data.\",\"PeriodicalId\":122928,\"journal\":{\"name\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2016.7546764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实验室采集的原子钟数据具有时间序列的特点,在研究动态神经网络算法的基础上,提出了基于动态神经网络时间序列模型的原子钟数据预测算法- nar (Nonparametric regression),并根据该算法设计了原子钟数据异常监测方法。用铯原子钟数据对监测方法进行了验证,结果表明本文提出的方法是可行的,可以实时有效地监测原子钟相关数据可能出现的相位跳变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the monitored method of atomic clock data exception based on the model of dynamic neural network time series-NAR
Atomic clock data of collected in laboratory has the characteristic of time series, so the atomic clock data forecasting algorithm based on the model of dynamic neural network time series-NAR (Nonparametric regression) is proposed according to the study of dynamic neural network algorithm, And the monitored method of atomic clock data exception is designed according to this algorithm. The monitored method was verified by cesium atomic clock data, results show that the proposed method in this paper is feasible, it can be monitored in real time and effectively that the possible phase jump of atomic clock correlation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信