视觉传达数学结变形

Juan Lin, Hui Zhang
{"title":"视觉传达数学结变形","authors":"Juan Lin, Hui Zhang","doi":"10.1145/3356422.3356438","DOIUrl":null,"url":null,"abstract":"Mathematical knots are different from everyday ropes in that they are infinitely stretchy and flexible when being deformed into their ambient isotopic. For this reason, a number of challenges arise when visualizing mathematical knot's static and changing structures during topological deformation. In this paper we focus on computational methods to visually communicate the mathematical knot's dynamics by computationally simulating the topological deformation and capturing the critical changes during the entire simulation. To further improve our visual experience, we propose a fast and adaptive method to extract key moments where only critical changes occur to represent and summarize the long deformation sequence. We conduct evaluation study to showcase the efficacy and efficiency of our methods.","PeriodicalId":197051,"journal":{"name":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visually Communicating Mathematical Knot Deformation\",\"authors\":\"Juan Lin, Hui Zhang\",\"doi\":\"10.1145/3356422.3356438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical knots are different from everyday ropes in that they are infinitely stretchy and flexible when being deformed into their ambient isotopic. For this reason, a number of challenges arise when visualizing mathematical knot's static and changing structures during topological deformation. In this paper we focus on computational methods to visually communicate the mathematical knot's dynamics by computationally simulating the topological deformation and capturing the critical changes during the entire simulation. To further improve our visual experience, we propose a fast and adaptive method to extract key moments where only critical changes occur to represent and summarize the long deformation sequence. We conduct evaluation study to showcase the efficacy and efficiency of our methods.\",\"PeriodicalId\":197051,\"journal\":{\"name\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3356422.3356438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356422.3356438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数学上的绳结不同于日常生活中的绳,因为当它们变形成周围的同位素时,它们具有无限的弹性和柔韧性。因此,在可视化数学结在拓扑变形过程中的静态和变化结构时,出现了许多挑战。在本文中,我们着重于通过计算模拟拓扑变形和捕捉整个模拟过程中的关键变化来直观地传达数学结的动力学的计算方法。为了进一步改善我们的视觉体验,我们提出了一种快速自适应的方法来提取只有关键变化发生的关键时刻,以表示和总结长变形序列。我们进行评估研究,以展示我们的方法的功效和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visually Communicating Mathematical Knot Deformation
Mathematical knots are different from everyday ropes in that they are infinitely stretchy and flexible when being deformed into their ambient isotopic. For this reason, a number of challenges arise when visualizing mathematical knot's static and changing structures during topological deformation. In this paper we focus on computational methods to visually communicate the mathematical knot's dynamics by computationally simulating the topological deformation and capturing the critical changes during the entire simulation. To further improve our visual experience, we propose a fast and adaptive method to extract key moments where only critical changes occur to represent and summarize the long deformation sequence. We conduct evaluation study to showcase the efficacy and efficiency of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信