恶意软件分类的字节可视化方法

Zhuojun Ren, Guang Chen, Wenke Lu
{"title":"恶意软件分类的字节可视化方法","authors":"Zhuojun Ren, Guang Chen, Wenke Lu","doi":"10.1145/3409073.3409093","DOIUrl":null,"url":null,"abstract":"The exponential increase in the number of malware stems from the fact that attackers often create malware variants with automated tools. And automated tools generally tend to reuse similar function modules. It is essential, therefore, that security analysts distinguish malware families by recognizing similar modules. For this reason, we present a new visualization method for malware pedigree analysis, using visual similarities in the byte distributions of malware to implement classification. The method converts malware samples into dot plot patterns, and then searches for k-nearest neighbors of every tested sample with the Jaccard distance to determine its family. To evaluate the classification performance of the proposed method, we randomly collected 771 harmful binary files from 72 malware families on the VX Heavens website. With the value of k varying between 1 and 9, our method had the best accuracy of 92.48% when k = 1.The experimental results show that the proposed method can distinguish malware families effectively.","PeriodicalId":229746,"journal":{"name":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Byte Visualization Method for Malware Classification\",\"authors\":\"Zhuojun Ren, Guang Chen, Wenke Lu\",\"doi\":\"10.1145/3409073.3409093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential increase in the number of malware stems from the fact that attackers often create malware variants with automated tools. And automated tools generally tend to reuse similar function modules. It is essential, therefore, that security analysts distinguish malware families by recognizing similar modules. For this reason, we present a new visualization method for malware pedigree analysis, using visual similarities in the byte distributions of malware to implement classification. The method converts malware samples into dot plot patterns, and then searches for k-nearest neighbors of every tested sample with the Jaccard distance to determine its family. To evaluate the classification performance of the proposed method, we randomly collected 771 harmful binary files from 72 malware families on the VX Heavens website. With the value of k varying between 1 and 9, our method had the best accuracy of 92.48% when k = 1.The experimental results show that the proposed method can distinguish malware families effectively.\",\"PeriodicalId\":229746,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409073.3409093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409073.3409093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恶意软件数量的指数级增长源于攻击者经常使用自动化工具创建恶意软件变体的事实。自动化工具通常倾向于重用类似的功能模块。因此,安全分析人员必须通过识别相似的模块来区分恶意软件家族。为此,我们提出了一种新的恶意软件谱系分析可视化方法,利用恶意软件字节分布的视觉相似性来实现分类。该方法将恶意软件样本转换为点图模式,然后用Jaccard距离搜索每个测试样本的k近邻,以确定其家族。为了评估该方法的分类性能,我们随机收集了VX Heavens网站上72个恶意软件家族的771个有害二进制文件。当k值在1 ~ 9之间变化时,当k = 1时,我们的方法准确率最高,为92.48%。实验结果表明,该方法能有效区分恶意软件家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Byte Visualization Method for Malware Classification
The exponential increase in the number of malware stems from the fact that attackers often create malware variants with automated tools. And automated tools generally tend to reuse similar function modules. It is essential, therefore, that security analysts distinguish malware families by recognizing similar modules. For this reason, we present a new visualization method for malware pedigree analysis, using visual similarities in the byte distributions of malware to implement classification. The method converts malware samples into dot plot patterns, and then searches for k-nearest neighbors of every tested sample with the Jaccard distance to determine its family. To evaluate the classification performance of the proposed method, we randomly collected 771 harmful binary files from 72 malware families on the VX Heavens website. With the value of k varying between 1 and 9, our method had the best accuracy of 92.48% when k = 1.The experimental results show that the proposed method can distinguish malware families effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信