文献综述的知识提取

T. Erekhinskaya, Mithun Balakrishna, M. Tatu, Steven D. Werner, D. Moldovan
{"title":"文献综述的知识提取","authors":"T. Erekhinskaya, Mithun Balakrishna, M. Tatu, Steven D. Werner, D. Moldovan","doi":"10.1145/2910896.2925441","DOIUrl":null,"url":null,"abstract":"Researchers in all domains need to keep abreast with recent scientific advances. Finding relevant publications and reviewing them is a labor-intensive task that lacks efficient automatic tools to support it. Current tools are limited to standard keyword-based search systems that return potentially relevant documents and then leave the user with a monumental task of sifting through them. In this paper, we present a semantic-driven system to automatically extract the most important knowledge from a publication and reduces the effort required for the literature review. The system extracts key findings from biomedical papers in PubMed, populates a predefined template and displays it. This allows the user to get the key ideas of the content even before opening or downloading the publication.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Knowledge extraction for literature review\",\"authors\":\"T. Erekhinskaya, Mithun Balakrishna, M. Tatu, Steven D. Werner, D. Moldovan\",\"doi\":\"10.1145/2910896.2925441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers in all domains need to keep abreast with recent scientific advances. Finding relevant publications and reviewing them is a labor-intensive task that lacks efficient automatic tools to support it. Current tools are limited to standard keyword-based search systems that return potentially relevant documents and then leave the user with a monumental task of sifting through them. In this paper, we present a semantic-driven system to automatically extract the most important knowledge from a publication and reduces the effort required for the literature review. The system extracts key findings from biomedical papers in PubMed, populates a predefined template and displays it. This allows the user to get the key ideas of the content even before opening or downloading the publication.\",\"PeriodicalId\":109613,\"journal\":{\"name\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2925441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

所有领域的研究人员都需要跟上最新的科学进展。查找相关出版物并审查它们是一项劳动密集型任务,缺乏有效的自动工具来支持它。目前的工具仅限于标准的基于关键字的搜索系统,这些搜索系统返回可能相关的文档,然后留给用户一项艰巨的任务,即筛选这些文档。在本文中,我们提出了一个语义驱动的系统来自动从出版物中提取最重要的知识,并减少了文献综述所需的工作量。该系统从PubMed上的生物医学论文中提取关键发现,填充一个预定义的模板并显示出来。这允许用户甚至在打开或下载出版物之前就获得内容的关键思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge extraction for literature review
Researchers in all domains need to keep abreast with recent scientific advances. Finding relevant publications and reviewing them is a labor-intensive task that lacks efficient automatic tools to support it. Current tools are limited to standard keyword-based search systems that return potentially relevant documents and then leave the user with a monumental task of sifting through them. In this paper, we present a semantic-driven system to automatically extract the most important knowledge from a publication and reduces the effort required for the literature review. The system extracts key findings from biomedical papers in PubMed, populates a predefined template and displays it. This allows the user to get the key ideas of the content even before opening or downloading the publication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信