{"title":"热载子效应导致CMOS电路退化的仿真","authors":"K. Quader, P. Ko, C. Hu, P. Fang, J. Yue","doi":"10.1109/RELPHY.1992.187616","DOIUrl":null,"url":null,"abstract":"By comparing long-term ring-oscillator hot-carrier degradation data and simulation results the authors show that a public-domain circuit simulator, BERT (Berkeley Reliability Tools), can predict CMOS digital circuit speed degradation from transistor DC stress data. Large initial PMOSFET drain current enhancement can result in initial frequency enhancement followed by an initial fast degradation due to the zero crossing effect. The relationship between circuit lifetime and transistor DC stress is examined.<<ETX>>","PeriodicalId":154383,"journal":{"name":"30th Annual Proceedings Reliability Physics 1992","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Simulations of CMOS circuit degradation due to hot-carrier effects\",\"authors\":\"K. Quader, P. Ko, C. Hu, P. Fang, J. Yue\",\"doi\":\"10.1109/RELPHY.1992.187616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By comparing long-term ring-oscillator hot-carrier degradation data and simulation results the authors show that a public-domain circuit simulator, BERT (Berkeley Reliability Tools), can predict CMOS digital circuit speed degradation from transistor DC stress data. Large initial PMOSFET drain current enhancement can result in initial frequency enhancement followed by an initial fast degradation due to the zero crossing effect. The relationship between circuit lifetime and transistor DC stress is examined.<<ETX>>\",\"PeriodicalId\":154383,\"journal\":{\"name\":\"30th Annual Proceedings Reliability Physics 1992\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"30th Annual Proceedings Reliability Physics 1992\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.1992.187616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"30th Annual Proceedings Reliability Physics 1992","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.1992.187616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulations of CMOS circuit degradation due to hot-carrier effects
By comparing long-term ring-oscillator hot-carrier degradation data and simulation results the authors show that a public-domain circuit simulator, BERT (Berkeley Reliability Tools), can predict CMOS digital circuit speed degradation from transistor DC stress data. Large initial PMOSFET drain current enhancement can result in initial frequency enhancement followed by an initial fast degradation due to the zero crossing effect. The relationship between circuit lifetime and transistor DC stress is examined.<>