基于图像到图像转换的兴趣区域合成用于耳朵识别

Yacine Khaldi, Amir Benzaoui
{"title":"基于图像到图像转换的兴趣区域合成用于耳朵识别","authors":"Yacine Khaldi, Amir Benzaoui","doi":"10.1109/ICAASE51408.2020.9380127","DOIUrl":null,"url":null,"abstract":"Most ear recognition techniques use cropped ear images, as they are, with backgrounds, hair, part of the face or neck skin, and even cloths. These non-ear pixels of the image can negatively affect the classification decision. To avoid that, and to make sure that the classifier depends on ear pixels only, we propose using a tight Region-of-Interest (RoI) segmentation of the ear instead. This paper uses Image-to-Image translation to synthesize ear RoI segmentation and remove irrelevant pixels from input images. Furthermore, missing parts of the ear due to occlusion or distortion can also be synthesized. To accomplish that, we used Pix2Pix Generative Adversarial Network (GAN) trained on the AWE dataset, which is a challenging ear dataset. Experimental results show that using ear RoI segmentation positively affects the classification process, and significantly increases the recognition rate.","PeriodicalId":405638,"journal":{"name":"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Region of Interest Synthesis using Image-to-Image Translation for ear recognition\",\"authors\":\"Yacine Khaldi, Amir Benzaoui\",\"doi\":\"10.1109/ICAASE51408.2020.9380127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most ear recognition techniques use cropped ear images, as they are, with backgrounds, hair, part of the face or neck skin, and even cloths. These non-ear pixels of the image can negatively affect the classification decision. To avoid that, and to make sure that the classifier depends on ear pixels only, we propose using a tight Region-of-Interest (RoI) segmentation of the ear instead. This paper uses Image-to-Image translation to synthesize ear RoI segmentation and remove irrelevant pixels from input images. Furthermore, missing parts of the ear due to occlusion or distortion can also be synthesized. To accomplish that, we used Pix2Pix Generative Adversarial Network (GAN) trained on the AWE dataset, which is a challenging ear dataset. Experimental results show that using ear RoI segmentation positively affects the classification process, and significantly increases the recognition rate.\",\"PeriodicalId\":405638,\"journal\":{\"name\":\"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAASE51408.2020.9380127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAASE51408.2020.9380127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

大多数耳朵识别技术使用裁剪的耳朵图像,因为它们是背景,头发,部分面部或颈部皮肤,甚至是衣服。这些图像的非耳朵像素会对分类决策产生负面影响。为了避免这种情况,并确保分类器仅依赖于耳朵像素,我们建议使用耳朵的紧密感兴趣区域(RoI)分割。本文使用图像到图像的转换来合成耳朵感兴趣区域分割,并从输入图像中去除无关像素。此外,由于闭塞或扭曲而缺失的耳朵部分也可以合成。为了实现这一目标,我们使用了在AWE数据集上训练的Pix2Pix生成对抗网络(GAN),这是一个具有挑战性的耳朵数据集。实验结果表明,使用耳朵RoI分割对分类过程有积极影响,显著提高了识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region of Interest Synthesis using Image-to-Image Translation for ear recognition
Most ear recognition techniques use cropped ear images, as they are, with backgrounds, hair, part of the face or neck skin, and even cloths. These non-ear pixels of the image can negatively affect the classification decision. To avoid that, and to make sure that the classifier depends on ear pixels only, we propose using a tight Region-of-Interest (RoI) segmentation of the ear instead. This paper uses Image-to-Image translation to synthesize ear RoI segmentation and remove irrelevant pixels from input images. Furthermore, missing parts of the ear due to occlusion or distortion can also be synthesized. To accomplish that, we used Pix2Pix Generative Adversarial Network (GAN) trained on the AWE dataset, which is a challenging ear dataset. Experimental results show that using ear RoI segmentation positively affects the classification process, and significantly increases the recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信