Hongjun Zhang, Baiqiao Huang, Peng Zhang, Hongbin Ju
{"title":"一种新的SoS工程哲学——活力理论","authors":"Hongjun Zhang, Baiqiao Huang, Peng Zhang, Hongbin Ju","doi":"10.1109/SYSOSE.2019.8753870","DOIUrl":null,"url":null,"abstract":"As engineered systems increase their complexities, a new engineering nature of Systems of System (SoS) vitality is proposed aiming for a development trend from systems to self-adaption and self-recovery Cyber-physical Systems (CPS) in its adaptability to dynamic environmental changes. In terms of engineered system formalisms, an inorganic engineered system is transformed into a SoS composition with the characteristics of an organic lifeform, becoming a self-adaptive agent. Regarding to a way for constructing an engineering SoS, a traditional engineered system process model emerges in a new challenge with the addition of a virtual system in cyber space. In this paper, by analogy with the organic characteristics of living systems in nature, SoS vitality theory is proposed, which includes a technical framework and maturity level model for measuring the organic characteristics of engineering SoS for current technological development. This provides a conceptual reference for future directions in the development of engineered systems.","PeriodicalId":133413,"journal":{"name":"2019 14th Annual Conference System of Systems Engineering (SoSE)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New SoS Engineering Philosophy - Vitality Theory\",\"authors\":\"Hongjun Zhang, Baiqiao Huang, Peng Zhang, Hongbin Ju\",\"doi\":\"10.1109/SYSOSE.2019.8753870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As engineered systems increase their complexities, a new engineering nature of Systems of System (SoS) vitality is proposed aiming for a development trend from systems to self-adaption and self-recovery Cyber-physical Systems (CPS) in its adaptability to dynamic environmental changes. In terms of engineered system formalisms, an inorganic engineered system is transformed into a SoS composition with the characteristics of an organic lifeform, becoming a self-adaptive agent. Regarding to a way for constructing an engineering SoS, a traditional engineered system process model emerges in a new challenge with the addition of a virtual system in cyber space. In this paper, by analogy with the organic characteristics of living systems in nature, SoS vitality theory is proposed, which includes a technical framework and maturity level model for measuring the organic characteristics of engineering SoS for current technological development. This provides a conceptual reference for future directions in the development of engineered systems.\",\"PeriodicalId\":133413,\"journal\":{\"name\":\"2019 14th Annual Conference System of Systems Engineering (SoSE)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th Annual Conference System of Systems Engineering (SoSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSOSE.2019.8753870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Annual Conference System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2019.8753870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New SoS Engineering Philosophy - Vitality Theory
As engineered systems increase their complexities, a new engineering nature of Systems of System (SoS) vitality is proposed aiming for a development trend from systems to self-adaption and self-recovery Cyber-physical Systems (CPS) in its adaptability to dynamic environmental changes. In terms of engineered system formalisms, an inorganic engineered system is transformed into a SoS composition with the characteristics of an organic lifeform, becoming a self-adaptive agent. Regarding to a way for constructing an engineering SoS, a traditional engineered system process model emerges in a new challenge with the addition of a virtual system in cyber space. In this paper, by analogy with the organic characteristics of living systems in nature, SoS vitality theory is proposed, which includes a technical framework and maturity level model for measuring the organic characteristics of engineering SoS for current technological development. This provides a conceptual reference for future directions in the development of engineered systems.