生理情绪分析的多模态融合策略

Tenggan Zhang, Zhaopei Huang, Ruichen Li, Jinming Zhao, Qin Jin
{"title":"生理情绪分析的多模态融合策略","authors":"Tenggan Zhang, Zhaopei Huang, Ruichen Li, Jinming Zhao, Qin Jin","doi":"10.1145/3475957.3484452","DOIUrl":null,"url":null,"abstract":"Physiological-emotion analysis is a novel aspect of automatic emotion analysis. It can support revealing a subject's emotional state, even if he/she consciously suppresses the emotional expression. In this paper, we present our solutions for the MuSe-Physio sub-challenge of Multimodal Sentiment Analysis (MuSe) 2021. The aim of this task is to predict the level of psycho-physiological arousal from combined audio-visual signals and the galvanic skin response (also known as Electrodermal Activity signals) of subjects under a highly stress-induced free speech scenario. In the scenarios, the speaker's emotion can be conveyed in different modalities including acoustic, visual, textual, and physiological signal modalities. Due to the complementarity of different modalities, the fusion of the multiple modalities has a large impact on emotion analysis. In this paper, we highlight two aspects of our solutions: 1) we explore various efficient low-level and high-level features from different modalities for this task, 2) we propose two effective multi-modal fusion strategies to make full use of the different modalities. Our solutions achieve the best CCC performance of 0.5728 on the challenge testing set, which significantly outperforms the baseline system with corresponding CCC of 0.4908. The experimental results show that our proposed various effective features and efficient fusion strategies have a strong generalization ability and can bring more robust performance.","PeriodicalId":313996,"journal":{"name":"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimodal Fusion Strategies for Physiological-emotion Analysis\",\"authors\":\"Tenggan Zhang, Zhaopei Huang, Ruichen Li, Jinming Zhao, Qin Jin\",\"doi\":\"10.1145/3475957.3484452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physiological-emotion analysis is a novel aspect of automatic emotion analysis. It can support revealing a subject's emotional state, even if he/she consciously suppresses the emotional expression. In this paper, we present our solutions for the MuSe-Physio sub-challenge of Multimodal Sentiment Analysis (MuSe) 2021. The aim of this task is to predict the level of psycho-physiological arousal from combined audio-visual signals and the galvanic skin response (also known as Electrodermal Activity signals) of subjects under a highly stress-induced free speech scenario. In the scenarios, the speaker's emotion can be conveyed in different modalities including acoustic, visual, textual, and physiological signal modalities. Due to the complementarity of different modalities, the fusion of the multiple modalities has a large impact on emotion analysis. In this paper, we highlight two aspects of our solutions: 1) we explore various efficient low-level and high-level features from different modalities for this task, 2) we propose two effective multi-modal fusion strategies to make full use of the different modalities. Our solutions achieve the best CCC performance of 0.5728 on the challenge testing set, which significantly outperforms the baseline system with corresponding CCC of 0.4908. The experimental results show that our proposed various effective features and efficient fusion strategies have a strong generalization ability and can bring more robust performance.\",\"PeriodicalId\":313996,\"journal\":{\"name\":\"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3475957.3484452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3475957.3484452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生理情绪分析是自动情绪分析的一个新方向。它可以支持揭示被试的情绪状态,即使他/她有意识地压抑情绪表达。在本文中,我们提出了多模态情感分析(MuSe) 2021的MuSe- physio子挑战的解决方案。这项任务的目的是预测受试者在高度应激诱导的自由言论情景下,通过结合视听信号和皮肤电反应(也称为皮电活动信号)的心理生理唤醒水平。在这些场景中,说话人的情感可以以不同的方式传达,包括声音、视觉、文本和生理信号方式。由于不同模态的互补性,多模态的融合对情绪分析有很大的影响。在本文中,我们重点介绍了我们的解决方案的两个方面:1)我们探索了不同模式的各种高效的低水平和高水平特征;2)我们提出了两种有效的多模式融合策略,以充分利用不同的模式。我们的解决方案在挑战测试集上实现了0.5728的最佳CCC性能,显著优于相应CCC为0.4908的基线系统。实验结果表明,我们提出的各种有效特征和高效融合策略具有较强的泛化能力,可以带来更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Fusion Strategies for Physiological-emotion Analysis
Physiological-emotion analysis is a novel aspect of automatic emotion analysis. It can support revealing a subject's emotional state, even if he/she consciously suppresses the emotional expression. In this paper, we present our solutions for the MuSe-Physio sub-challenge of Multimodal Sentiment Analysis (MuSe) 2021. The aim of this task is to predict the level of psycho-physiological arousal from combined audio-visual signals and the galvanic skin response (also known as Electrodermal Activity signals) of subjects under a highly stress-induced free speech scenario. In the scenarios, the speaker's emotion can be conveyed in different modalities including acoustic, visual, textual, and physiological signal modalities. Due to the complementarity of different modalities, the fusion of the multiple modalities has a large impact on emotion analysis. In this paper, we highlight two aspects of our solutions: 1) we explore various efficient low-level and high-level features from different modalities for this task, 2) we propose two effective multi-modal fusion strategies to make full use of the different modalities. Our solutions achieve the best CCC performance of 0.5728 on the challenge testing set, which significantly outperforms the baseline system with corresponding CCC of 0.4908. The experimental results show that our proposed various effective features and efficient fusion strategies have a strong generalization ability and can bring more robust performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信