一种确定链路规格的无监督方法

Khayra Bencherif, M. Malki, Djamel Amar Bensaber
{"title":"一种确定链路规格的无监督方法","authors":"Khayra Bencherif, M. Malki, Djamel Amar Bensaber","doi":"10.4018/IJITWE.2018100106","DOIUrl":null,"url":null,"abstract":"This article describes how the Linked Open Data Cloud project allows data providers to publish structured data on the web according to the Linked Data principles. In this context, several link discovery frameworks have been developed for connecting entities contained in knowledge bases. In order to achieve a high effectiveness for the link discovery task, a suitable link configuration is required to specify the similarity conditions. Unfortunately, such configurations are specified manually; which makes the link discovery task tedious and more difficult for the users. In this article, the authors address this drawback by proposing a novel approach for the automatic determination of link specifications. The proposed approach is based on a neural network model to combine a set of existing metrics into a compound one. The authors evaluate the effectiveness of the proposed approach in three experiments using real data sets from the LOD Cloud. In addition, the proposed approach is compared against link specifications approaches to show that it outperforms them in most experiments.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"1705 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unsupervised Approach for Determining Link Specifications\",\"authors\":\"Khayra Bencherif, M. Malki, Djamel Amar Bensaber\",\"doi\":\"10.4018/IJITWE.2018100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes how the Linked Open Data Cloud project allows data providers to publish structured data on the web according to the Linked Data principles. In this context, several link discovery frameworks have been developed for connecting entities contained in knowledge bases. In order to achieve a high effectiveness for the link discovery task, a suitable link configuration is required to specify the similarity conditions. Unfortunately, such configurations are specified manually; which makes the link discovery task tedious and more difficult for the users. In this article, the authors address this drawback by proposing a novel approach for the automatic determination of link specifications. The proposed approach is based on a neural network model to combine a set of existing metrics into a compound one. The authors evaluate the effectiveness of the proposed approach in three experiments using real data sets from the LOD Cloud. In addition, the proposed approach is compared against link specifications approaches to show that it outperforms them in most experiments.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"1705 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJITWE.2018100106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2018100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了关联开放数据云项目如何允许数据提供商根据关联数据原则在web上发布结构化数据。在这种情况下,已经开发了几个链接发现框架,用于连接知识库中包含的实体。为了提高链路发现任务的效率,需要适当的链路配置来指定相似条件。不幸的是,这样的配置是手动指定的;这使得链接发现任务对用户来说更加繁琐和困难。在本文中,作者通过提出一种自动确定链路规范的新方法来解决这个缺点。该方法基于神经网络模型,将一组现有指标组合成一个复合指标。作者使用来自LOD Cloud的真实数据集在三个实验中评估了所提出方法的有效性。此外,将所提出的方法与链路规范方法进行了比较,表明它在大多数实验中都优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unsupervised Approach for Determining Link Specifications
This article describes how the Linked Open Data Cloud project allows data providers to publish structured data on the web according to the Linked Data principles. In this context, several link discovery frameworks have been developed for connecting entities contained in knowledge bases. In order to achieve a high effectiveness for the link discovery task, a suitable link configuration is required to specify the similarity conditions. Unfortunately, such configurations are specified manually; which makes the link discovery task tedious and more difficult for the users. In this article, the authors address this drawback by proposing a novel approach for the automatic determination of link specifications. The proposed approach is based on a neural network model to combine a set of existing metrics into a compound one. The authors evaluate the effectiveness of the proposed approach in three experiments using real data sets from the LOD Cloud. In addition, the proposed approach is compared against link specifications approaches to show that it outperforms them in most experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信