用于绘画扫描路径预测的领域自适应深度学习解决方案

M. A. Kerkouri, M. Tliba, A. Chetouani, A. Bruno
{"title":"用于绘画扫描路径预测的领域自适应深度学习解决方案","authors":"M. A. Kerkouri, M. Tliba, A. Chetouani, A. Bruno","doi":"10.1145/3549555.3549597","DOIUrl":null,"url":null,"abstract":"Cultural heritage understanding and preservation is an important issue for society as it represents a fundamental aspect of its identity. Paintings represent a significant part of cultural heritage, and are the subject of study continuously. However, the way viewers perceive paintings is strictly related to the so-called HVS (Human Vision System) behaviour. This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings. In further details, we introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans, including the fundamental understanding of a scene, and then extend it to painting images. The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers’ attention. We use an FCNN (Fully Convolutional Neural Network), in which we exploit a differentiable channel-wise selection and Soft-Argmax modules. We also incorporate learnable Gaussian distributions onto the network bottleneck to simulate visual attention process bias in natural scene images. Furthermore, to reduce the effect of shifts between different domains (i.e. natural images, painting), we urge the model to learn unsupervised general features from other domains using a gradient reversal classifier. The results obtained by our model outperform existing state-of-the-art ones in terms of accuracy and efficiency.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A domain adaptive deep learning solution for scanpath prediction of paintings\",\"authors\":\"M. A. Kerkouri, M. Tliba, A. Chetouani, A. Bruno\",\"doi\":\"10.1145/3549555.3549597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cultural heritage understanding and preservation is an important issue for society as it represents a fundamental aspect of its identity. Paintings represent a significant part of cultural heritage, and are the subject of study continuously. However, the way viewers perceive paintings is strictly related to the so-called HVS (Human Vision System) behaviour. This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings. In further details, we introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans, including the fundamental understanding of a scene, and then extend it to painting images. The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers’ attention. We use an FCNN (Fully Convolutional Neural Network), in which we exploit a differentiable channel-wise selection and Soft-Argmax modules. We also incorporate learnable Gaussian distributions onto the network bottleneck to simulate visual attention process bias in natural scene images. Furthermore, to reduce the effect of shifts between different domains (i.e. natural images, painting), we urge the model to learn unsupervised general features from other domains using a gradient reversal classifier. The results obtained by our model outperform existing state-of-the-art ones in terms of accuracy and efficiency.\",\"PeriodicalId\":191591,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549555.3549597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文化遗产的理解和保护是社会的一个重要问题,因为它代表了社会身份的一个基本方面。绘画是文化遗产的重要组成部分,是人们不断研究的对象。然而,观众感知绘画的方式与所谓的HVS(人类视觉系统)行为严格相关。本文主要对观众在观看一定量的绘画作品时的视觉体验进行眼动分析。在进一步的细节中,我们介绍了一种新的方法来预测人类的视觉注意力,它会影响人类的几种认知功能,包括对场景的基本理解,然后将其扩展到绘画图像。提出的新建筑摄取图像并返回扫描路径,这是一系列极有可能吸引观众注意力的点。我们使用FCNN(全卷积神经网络),其中我们利用可微通道选择和Soft-Argmax模块。我们还在网络瓶颈中加入了可学习的高斯分布来模拟自然场景图像中的视觉注意过程偏差。此外,为了减少不同领域(即自然图像,绘画)之间的移位的影响,我们敦促模型使用梯度反转分类器从其他领域学习无监督的一般特征。我们的模型获得的结果在准确性和效率方面优于现有的最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A domain adaptive deep learning solution for scanpath prediction of paintings
Cultural heritage understanding and preservation is an important issue for society as it represents a fundamental aspect of its identity. Paintings represent a significant part of cultural heritage, and are the subject of study continuously. However, the way viewers perceive paintings is strictly related to the so-called HVS (Human Vision System) behaviour. This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings. In further details, we introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans, including the fundamental understanding of a scene, and then extend it to painting images. The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers’ attention. We use an FCNN (Fully Convolutional Neural Network), in which we exploit a differentiable channel-wise selection and Soft-Argmax modules. We also incorporate learnable Gaussian distributions onto the network bottleneck to simulate visual attention process bias in natural scene images. Furthermore, to reduce the effect of shifts between different domains (i.e. natural images, painting), we urge the model to learn unsupervised general features from other domains using a gradient reversal classifier. The results obtained by our model outperform existing state-of-the-art ones in terms of accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信