低功耗和可信机器学习

Avesta Sasan, Qi Zu, Yanzhi Wang, Jae-sun Seo, T. Mohsenin
{"title":"低功耗和可信机器学习","authors":"Avesta Sasan, Qi Zu, Yanzhi Wang, Jae-sun Seo, T. Mohsenin","doi":"10.1145/3194554.3216321","DOIUrl":null,"url":null,"abstract":"In this special discussion session on machine learning, the panel members discuss various issues related to building secure and low power neuromorphic systems. The security of neuromorphic systems may be discussed in term of the reliability of the model, trust in the model, and security of the underlying hardware. The low power aspect of neuromorphic computing systems may be discussed in terms of adaptation of new devices and technologies, the adaptation of new computational models, development of heterogeneous computing frameworks, or dedicated engines for processing neuromorphic models. This session may include discussion on the design space of such supporting hardware, exploring tradeoffs between power/energy, security, scalability, hardware area, performance, and accuracy.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Power and Trusted Machine Learning\",\"authors\":\"Avesta Sasan, Qi Zu, Yanzhi Wang, Jae-sun Seo, T. Mohsenin\",\"doi\":\"10.1145/3194554.3216321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this special discussion session on machine learning, the panel members discuss various issues related to building secure and low power neuromorphic systems. The security of neuromorphic systems may be discussed in term of the reliability of the model, trust in the model, and security of the underlying hardware. The low power aspect of neuromorphic computing systems may be discussed in terms of adaptation of new devices and technologies, the adaptation of new computational models, development of heterogeneous computing frameworks, or dedicated engines for processing neuromorphic models. This session may include discussion on the design space of such supporting hardware, exploring tradeoffs between power/energy, security, scalability, hardware area, performance, and accuracy.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3216321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3216321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个关于机器学习的特别讨论环节中,小组成员讨论了与构建安全和低功耗神经形态系统相关的各种问题。神经形态系统的安全性可以从模型的可靠性、对模型的信任和底层硬件的安全性三个方面来讨论。神经形态计算系统的低功耗方面可以从新设备和技术的适应、新计算模型的适应、异构计算框架的开发或处理神经形态模型的专用引擎等方面进行讨论。该会议可能包括对此类支持硬件的设计空间的讨论,探索电源/能源、安全性、可伸缩性、硬件区域、性能和准确性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Power and Trusted Machine Learning
In this special discussion session on machine learning, the panel members discuss various issues related to building secure and low power neuromorphic systems. The security of neuromorphic systems may be discussed in term of the reliability of the model, trust in the model, and security of the underlying hardware. The low power aspect of neuromorphic computing systems may be discussed in terms of adaptation of new devices and technologies, the adaptation of new computational models, development of heterogeneous computing frameworks, or dedicated engines for processing neuromorphic models. This session may include discussion on the design space of such supporting hardware, exploring tradeoffs between power/energy, security, scalability, hardware area, performance, and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信