蜂窝OFDMA的下行链路Erlang容量

Gauri Joshi, Harshad Maral, A. Karandikar
{"title":"蜂窝OFDMA的下行链路Erlang容量","authors":"Gauri Joshi, Harshad Maral, A. Karandikar","doi":"10.1109/NCC.2011.5734706","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to evaluate the downlink Erlang capacity of a cellular Orthogonal Frequency Division Multiple Access (OFDMA) system with 1∶1 frequency reuse. Erlang capacity analysis of traditional cellular systems like Global System for Mobile communications (GSM) cannot be applied to cellular OFDMA because in the latter, each incoming call requires a random number of subcarriers. To address this problem, we divide incoming calls into classes according to their subcarrier requirement. Then, we model the system as a multi-dimensional Markov chain and evaluate the Erlang capacity. We draw an interesting analogy between the problem considered, and the concept of stochastic knapsack, a generalization of the classical knapsack problem. Techniques used to solve the stochastic knapsack problem simplify the analysis of the multi-dimensional Markov chain.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Downlink Erlang capacity of cellular OFDMA\",\"authors\":\"Gauri Joshi, Harshad Maral, A. Karandikar\",\"doi\":\"10.1109/NCC.2011.5734706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to evaluate the downlink Erlang capacity of a cellular Orthogonal Frequency Division Multiple Access (OFDMA) system with 1∶1 frequency reuse. Erlang capacity analysis of traditional cellular systems like Global System for Mobile communications (GSM) cannot be applied to cellular OFDMA because in the latter, each incoming call requires a random number of subcarriers. To address this problem, we divide incoming calls into classes according to their subcarrier requirement. Then, we model the system as a multi-dimensional Markov chain and evaluate the Erlang capacity. We draw an interesting analogy between the problem considered, and the concept of stochastic knapsack, a generalization of the classical knapsack problem. Techniques used to solve the stochastic knapsack problem simplify the analysis of the multi-dimensional Markov chain.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种评估1∶1频率复用蜂窝正交频分多址(OFDMA)系统下行Erlang容量的新方法。全球移动通信系统(GSM)等传统蜂窝系统的Erlang容量分析不能应用于蜂窝OFDMA,因为在后者中,每个入局呼叫都需要随机数量的子载波。为了解决这个问题,我们根据它们的子载波需求将入站呼叫划分为类。然后,我们将系统建模为一个多维马尔可夫链,并评估Erlang容量。我们在所考虑的问题和随机背包的概念之间做了一个有趣的类比,随机背包是经典背包问题的推广。用于解决随机背包问题的技术简化了多维马尔可夫链的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downlink Erlang capacity of cellular OFDMA
In this paper, we present a novel approach to evaluate the downlink Erlang capacity of a cellular Orthogonal Frequency Division Multiple Access (OFDMA) system with 1∶1 frequency reuse. Erlang capacity analysis of traditional cellular systems like Global System for Mobile communications (GSM) cannot be applied to cellular OFDMA because in the latter, each incoming call requires a random number of subcarriers. To address this problem, we divide incoming calls into classes according to their subcarrier requirement. Then, we model the system as a multi-dimensional Markov chain and evaluate the Erlang capacity. We draw an interesting analogy between the problem considered, and the concept of stochastic knapsack, a generalization of the classical knapsack problem. Techniques used to solve the stochastic knapsack problem simplify the analysis of the multi-dimensional Markov chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信