基于最小wilcoxon范数的无线传感器网络鲁棒扩散策略

Sananda Kumar, A. Sahoo, U. K. Sahoo, D. P. Acharya
{"title":"基于最小wilcoxon范数的无线传感器网络鲁棒扩散策略","authors":"Sananda Kumar, A. Sahoo, U. K. Sahoo, D. P. Acharya","doi":"10.1049/iet-spr.2015.0386","DOIUrl":null,"url":null,"abstract":"Impulsive noise and interference are always present in the environment in addition to additive white Gaussian noise that corrupts the measured data. In such cases, conventional adaptive estimation algorithms based on least squares error cost function provides poor performance in estimating the optimum parameter. In order to alleviate this shortcoming, a robust diffusion strategy based on QR decomposition and the Wilcoxon norm is proposed. The proposed QR-based diffusion minimum-Wilcoxon-norm (DMWN) provides faster convergence than the DMWN. To demonstrate the efficacy of the algorithm, simulations are carried out with different percentage of outliers in the desired data and found to be robust against traditional methods. Moreover, the condition for convergence in mean is analysed, and the algorithm is observed to be stable.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"QR-based robust diffusion strategies for wireless sensor networks using minimum-Wilcoxon-norm\",\"authors\":\"Sananda Kumar, A. Sahoo, U. K. Sahoo, D. P. Acharya\",\"doi\":\"10.1049/iet-spr.2015.0386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impulsive noise and interference are always present in the environment in addition to additive white Gaussian noise that corrupts the measured data. In such cases, conventional adaptive estimation algorithms based on least squares error cost function provides poor performance in estimating the optimum parameter. In order to alleviate this shortcoming, a robust diffusion strategy based on QR decomposition and the Wilcoxon norm is proposed. The proposed QR-based diffusion minimum-Wilcoxon-norm (DMWN) provides faster convergence than the DMWN. To demonstrate the efficacy of the algorithm, simulations are carried out with different percentage of outliers in the desired data and found to be robust against traditional methods. Moreover, the condition for convergence in mean is analysed, and the algorithm is observed to be stable.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2015.0386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

除高斯白噪声外,环境中还存在脉冲噪声和干扰。在这种情况下,传统的基于最小二乘误差代价函数的自适应估计算法在估计最优参数时性能较差。为了克服这一缺点,提出了一种基于QR分解和Wilcoxon范数的鲁棒扩散策略。提出的基于qr的扩散最小- wilcoxon -范数(DMWN)具有比DMWN更快的收敛速度。为了证明该算法的有效性,在期望数据中使用不同百分比的异常值进行了模拟,并发现该算法对传统方法具有鲁棒性。分析了算法收敛于均值的条件,证明了算法是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QR-based robust diffusion strategies for wireless sensor networks using minimum-Wilcoxon-norm
Impulsive noise and interference are always present in the environment in addition to additive white Gaussian noise that corrupts the measured data. In such cases, conventional adaptive estimation algorithms based on least squares error cost function provides poor performance in estimating the optimum parameter. In order to alleviate this shortcoming, a robust diffusion strategy based on QR decomposition and the Wilcoxon norm is proposed. The proposed QR-based diffusion minimum-Wilcoxon-norm (DMWN) provides faster convergence than the DMWN. To demonstrate the efficacy of the algorithm, simulations are carried out with different percentage of outliers in the desired data and found to be robust against traditional methods. Moreover, the condition for convergence in mean is analysed, and the algorithm is observed to be stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信