{"title":"用于工业设施需求响应能源管理的硬件在环模拟器","authors":"Zhe Luo, Musharraf Alam, S. Hong, Yuemin Ding, Aidong Xu, Daehyun Kwon","doi":"10.1109/MSCPES.2015.7115396","DOIUrl":null,"url":null,"abstract":"Demand response (DR) used in smart grid (SG) can enhance the reliability of the power system as well as reduce the energy costs for customers. One of the major consumers of electrical energy is industry. In this study, we develop a hardware-in-the-loop (HIL) simulator to demonstrate how to practically implement DR in industrial facilities. The HIL simulator includes an energy management system (EMS), a monitoring and control system (MCS), an industrial Ethernet backbone network based on RAPIEnet protocol, and a wireless field network based on ISA100.11a protocol. The results show that the electricity demand of industrial facilities can be shifted from peak to off-peak demand periods to improve the reliability of the electrical grid.","PeriodicalId":212582,"journal":{"name":"2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A hardware-in-the-loop simulator for demand response energy management in industrial facilities\",\"authors\":\"Zhe Luo, Musharraf Alam, S. Hong, Yuemin Ding, Aidong Xu, Daehyun Kwon\",\"doi\":\"10.1109/MSCPES.2015.7115396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand response (DR) used in smart grid (SG) can enhance the reliability of the power system as well as reduce the energy costs for customers. One of the major consumers of electrical energy is industry. In this study, we develop a hardware-in-the-loop (HIL) simulator to demonstrate how to practically implement DR in industrial facilities. The HIL simulator includes an energy management system (EMS), a monitoring and control system (MCS), an industrial Ethernet backbone network based on RAPIEnet protocol, and a wireless field network based on ISA100.11a protocol. The results show that the electricity demand of industrial facilities can be shifted from peak to off-peak demand periods to improve the reliability of the electrical grid.\",\"PeriodicalId\":212582,\"journal\":{\"name\":\"2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSCPES.2015.7115396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSCPES.2015.7115396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hardware-in-the-loop simulator for demand response energy management in industrial facilities
Demand response (DR) used in smart grid (SG) can enhance the reliability of the power system as well as reduce the energy costs for customers. One of the major consumers of electrical energy is industry. In this study, we develop a hardware-in-the-loop (HIL) simulator to demonstrate how to practically implement DR in industrial facilities. The HIL simulator includes an energy management system (EMS), a monitoring and control system (MCS), an industrial Ethernet backbone network based on RAPIEnet protocol, and a wireless field network based on ISA100.11a protocol. The results show that the electricity demand of industrial facilities can be shifted from peak to off-peak demand periods to improve the reliability of the electrical grid.