同伦与多项式系统解I:基本原理

SIGSAM Bull. Pub Date : 2001-03-01 DOI:10.1145/504331.504334
I. Kotsireas
{"title":"同伦与多项式系统解I:基本原理","authors":"I. Kotsireas","doi":"10.1145/504331.504334","DOIUrl":null,"url":null,"abstract":"We present a survey of some basic ideas involved in the use of homotopies for solving systems of polynomial equations. These ideas are illustrated with many concrete examples. An introductory section on systems of polynomial equations and their solutions contains some necessary terminology that will be used in the sequel. We also describe a general algorithm to solve polynomial systems of n equations in n unknowns using homotopies. A Maple V implementation of the algorithm as well as a few accompanying Maple 6 worksheets are publicly available from the author's web page.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Homotopies and polynomial system solving I: basic principles\",\"authors\":\"I. Kotsireas\",\"doi\":\"10.1145/504331.504334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a survey of some basic ideas involved in the use of homotopies for solving systems of polynomial equations. These ideas are illustrated with many concrete examples. An introductory section on systems of polynomial equations and their solutions contains some necessary terminology that will be used in the sequel. We also describe a general algorithm to solve polynomial systems of n equations in n unknowns using homotopies. A Maple V implementation of the algorithm as well as a few accompanying Maple 6 worksheets are publicly available from the author's web page.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/504331.504334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/504331.504334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文综述了利用同伦求解多项式方程组所涉及的一些基本思想。这些观点用许多具体的例子加以说明。关于多项式方程组及其解的介绍性部分包含了一些必要的术语,这些术语将在续集中使用。我们还描述了一种利用同伦求解n未知数n方程多项式系统的一般算法。该算法的Maple V实现以及一些附带的Maple 6工作表可以从作者的网页上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopies and polynomial system solving I: basic principles
We present a survey of some basic ideas involved in the use of homotopies for solving systems of polynomial equations. These ideas are illustrated with many concrete examples. An introductory section on systems of polynomial equations and their solutions contains some necessary terminology that will be used in the sequel. We also describe a general algorithm to solve polynomial systems of n equations in n unknowns using homotopies. A Maple V implementation of the algorithm as well as a few accompanying Maple 6 worksheets are publicly available from the author's web page.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信