基于人工神经网络的线性电阻相关温度传感器实时诊断

Y. M. Safonov, N. N. Fedortsov, N. Dulnev, D. A. Blagodarov
{"title":"基于人工神经网络的线性电阻相关温度传感器实时诊断","authors":"Y. M. Safonov, N. N. Fedortsov, N. Dulnev, D. A. Blagodarov","doi":"10.1109/ICEPDS47235.2020.9249079","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of diagnosing the state of temperature sensors with linear resistance dependence via an artificial neural network in real-time. The paper considers the relevance of this topic, describes the advantages of the methods, explains the algorithm of work. The necessity of using the ANN is justified, trained on data taken from a real object, and tested by the ANN. Theoretical calculations are confirmed by experimental data.","PeriodicalId":115427,"journal":{"name":"2020 XI International Conference on Electrical Power Drive Systems (ICEPDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time diagnostic for the temperature sensors with linear resistance dependence via an artificial neural network\",\"authors\":\"Y. M. Safonov, N. N. Fedortsov, N. Dulnev, D. A. Blagodarov\",\"doi\":\"10.1109/ICEPDS47235.2020.9249079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method of diagnosing the state of temperature sensors with linear resistance dependence via an artificial neural network in real-time. The paper considers the relevance of this topic, describes the advantages of the methods, explains the algorithm of work. The necessity of using the ANN is justified, trained on data taken from a real object, and tested by the ANN. Theoretical calculations are confirmed by experimental data.\",\"PeriodicalId\":115427,\"journal\":{\"name\":\"2020 XI International Conference on Electrical Power Drive Systems (ICEPDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XI International Conference on Electrical Power Drive Systems (ICEPDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPDS47235.2020.9249079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XI International Conference on Electrical Power Drive Systems (ICEPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPDS47235.2020.9249079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用人工神经网络实时诊断电阻线性相关温度传感器状态的方法。本文考虑了本课题的相关性,阐述了各方法的优点,说明了工作的算法。证明了使用人工神经网络的必要性,并对取自真实物体的数据进行了训练,并用人工神经网络进行了测试。理论计算得到了实验数据的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time diagnostic for the temperature sensors with linear resistance dependence via an artificial neural network
This paper proposes a method of diagnosing the state of temperature sensors with linear resistance dependence via an artificial neural network in real-time. The paper considers the relevance of this topic, describes the advantages of the methods, explains the algorithm of work. The necessity of using the ANN is justified, trained on data taken from a real object, and tested by the ANN. Theoretical calculations are confirmed by experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信