Log. J. IGPL Pub Date : 2020-09-25 DOI:10.1093/JIGPAL/JZY061
H. Antunes
{"title":"Enthymematic classical recapture 1","authors":"H. Antunes","doi":"10.1093/JIGPAL/JZY061","DOIUrl":null,"url":null,"abstract":"Priest (2006, Ch.8, 2nd edn. Oxford University Press), argues that classical reasoning can be made compatible with his preferred (paraconsistent) logical theory by proposing a methodological maxim authorizing the use of classical logic in consistent situations. Although Priest has abandoned this proposal in favour of the one in G. Priest (1991, Stud. Log., 50, 321–331), I shall argue that due to the fact that the derivability adjustment theorem holds for several logics of formal (in)consistency (cf. W. A. Carnielli and M. E. Coniglio, 2016, Springer), these paraconsistent logics are particularly well suited to accommodate classical reasoning by means of a version of that maxim, yielding thus an enthymematic account of classical recapture.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZY061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

牧师(2006,第8卷,第2版)。牛津大学出版社),认为经典推理可以与他的首选(副一致)逻辑理论兼容,通过提出一个方法准则,授权在一致的情况下使用经典逻辑。尽管普里斯特已经放弃了这一建议,转而支持G.普里斯特(1991,Stud。日志。, 50, 321-331),我认为,由于可导性调整定理适用于几种形式(in)一致性逻辑(参见W. a .卡尼内利和M. E. Coniglio, 2016, Springer),这些副一致性逻辑特别适合通过该准则的一个版本来适应经典推理,从而产生经典再现的热力学描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enthymematic classical recapture 1
Priest (2006, Ch.8, 2nd edn. Oxford University Press), argues that classical reasoning can be made compatible with his preferred (paraconsistent) logical theory by proposing a methodological maxim authorizing the use of classical logic in consistent situations. Although Priest has abandoned this proposal in favour of the one in G. Priest (1991, Stud. Log., 50, 321–331), I shall argue that due to the fact that the derivability adjustment theorem holds for several logics of formal (in)consistency (cf. W. A. Carnielli and M. E. Coniglio, 2016, Springer), these paraconsistent logics are particularly well suited to accommodate classical reasoning by means of a version of that maxim, yielding thus an enthymematic account of classical recapture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信