用机器学习模型预测碳价格

J. Kanda, A. C. P. L. F. D. Carvalho
{"title":"用机器学习模型预测碳价格","authors":"J. Kanda, A. C. P. L. F. D. Carvalho","doi":"10.17648/aos.v12i2.2916","DOIUrl":null,"url":null,"abstract":"Controlar e reduzir as emissões de gases de efeito estufa são ações necessárias para evitar as possíveis consequências provenientes das mudanças climáticas. Neste contexto, o mercado de carbono tem grande relevância, principalmente, para países em desenvolvimento como o Brasil que possui uma imensa riqueza ambiental com a sua Floresta Amazônica. O propósito deste estudo é identificar conjuntos de dados de sustentabilidade a serem usados por modelos preditivos de aprendizado de máquina (AM) capazes de estimar com a maior precisão possível o preço do carbono praticado no mercado mundial. Em nossos experimentos computacionais, algoritmos foram implementados a partir de diferentes algoritmos de AM, sendo usados como parâmetros de entrada diversos conjuntos de dados. Os resultados obtidos mostram que dados amazônicos parecem ter uma relação direta com o preço do carbono praticado no mercado mundial. Um procedimento de seleção de atributos foi aplicado na união dos conjuntos dos dados amazônicos que também foi submetido aos mesmos modelos de AM para verificar se há melhorias no desempenho preditivo. Portanto, havendo uma estimativa precisa do preço do carbono e o Brasil regulamentando as regras para o comércio do carbono, a Região Amazônica tende a ser beneficiada com ganhos significativos nos aspectos ambientais, econômicos e sociais.","PeriodicalId":199232,"journal":{"name":"Amazônia, Organizações e Sustentabilidade","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Previsão do preço do carbono por modelos de aprendizado de máquina\",\"authors\":\"J. Kanda, A. C. P. L. F. D. Carvalho\",\"doi\":\"10.17648/aos.v12i2.2916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlar e reduzir as emissões de gases de efeito estufa são ações necessárias para evitar as possíveis consequências provenientes das mudanças climáticas. Neste contexto, o mercado de carbono tem grande relevância, principalmente, para países em desenvolvimento como o Brasil que possui uma imensa riqueza ambiental com a sua Floresta Amazônica. O propósito deste estudo é identificar conjuntos de dados de sustentabilidade a serem usados por modelos preditivos de aprendizado de máquina (AM) capazes de estimar com a maior precisão possível o preço do carbono praticado no mercado mundial. Em nossos experimentos computacionais, algoritmos foram implementados a partir de diferentes algoritmos de AM, sendo usados como parâmetros de entrada diversos conjuntos de dados. Os resultados obtidos mostram que dados amazônicos parecem ter uma relação direta com o preço do carbono praticado no mercado mundial. Um procedimento de seleção de atributos foi aplicado na união dos conjuntos dos dados amazônicos que também foi submetido aos mesmos modelos de AM para verificar se há melhorias no desempenho preditivo. Portanto, havendo uma estimativa precisa do preço do carbono e o Brasil regulamentando as regras para o comércio do carbono, a Região Amazônica tende a ser beneficiada com ganhos significativos nos aspectos ambientais, econômicos e sociais.\",\"PeriodicalId\":199232,\"journal\":{\"name\":\"Amazônia, Organizações e Sustentabilidade\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amazônia, Organizações e Sustentabilidade\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17648/aos.v12i2.2916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amazônia, Organizações e Sustentabilidade","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/aos.v12i2.2916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制和减少温室气体排放是避免气候变化可能产生的后果的必要行动。在这种背景下,碳市场具有很大的相关性,特别是对巴西这样的发展中国家来说,巴西的亚马逊雨林拥有巨大的环境财富。本研究的目的是确定可持续性数据集,用于预测机器学习模型(AM),能够尽可能准确地估计全球市场上的碳价格。在我们的计算实验中,算法由不同的AM算法实现,并使用不同的数据集作为输入参数。结果表明,亚马逊数据似乎与全球市场上的碳价格有直接关系。在亚马逊数据集的联合中应用了属性选择程序,这些数据集也提交给相同的AM模型,以验证预测性能是否有改进。因此,随着碳价格的准确估计和巴西对碳交易规则的监管,亚马逊地区往往受益于环境、经济和社会方面的显著收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Previsão do preço do carbono por modelos de aprendizado de máquina
Controlar e reduzir as emissões de gases de efeito estufa são ações necessárias para evitar as possíveis consequências provenientes das mudanças climáticas. Neste contexto, o mercado de carbono tem grande relevância, principalmente, para países em desenvolvimento como o Brasil que possui uma imensa riqueza ambiental com a sua Floresta Amazônica. O propósito deste estudo é identificar conjuntos de dados de sustentabilidade a serem usados por modelos preditivos de aprendizado de máquina (AM) capazes de estimar com a maior precisão possível o preço do carbono praticado no mercado mundial. Em nossos experimentos computacionais, algoritmos foram implementados a partir de diferentes algoritmos de AM, sendo usados como parâmetros de entrada diversos conjuntos de dados. Os resultados obtidos mostram que dados amazônicos parecem ter uma relação direta com o preço do carbono praticado no mercado mundial. Um procedimento de seleção de atributos foi aplicado na união dos conjuntos dos dados amazônicos que também foi submetido aos mesmos modelos de AM para verificar se há melhorias no desempenho preditivo. Portanto, havendo uma estimativa precisa do preço do carbono e o Brasil regulamentando as regras para o comércio do carbono, a Região Amazônica tende a ser beneficiada com ganhos significativos nos aspectos ambientais, econômicos e sociais.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信