A. Tang, F. Hsiao, D. Murphy, I-Ning Ku, J. Liu, Sandeep D'Souza, N. Wang, Hao Wu, Yen-Hsiang Wang, Mandy Tang, G. Virbila, Mike Pham, Derek Yang, Q. Gu, Yi-Cheng Wu, Yen-Cheng Kuan, C. Chien, Mau-Chung Frank Chang
{"title":"一种低开销的自修复嵌入式系统,可确保60GHz 4Gb/s片上无线电的高产量和长期可持续性","authors":"A. Tang, F. Hsiao, D. Murphy, I-Ning Ku, J. Liu, Sandeep D'Souza, N. Wang, Hao Wu, Yen-Hsiang Wang, Mandy Tang, G. Virbila, Mike Pham, Derek Yang, Q. Gu, Yi-Cheng Wu, Yen-Cheng Kuan, C. Chien, Mau-Chung Frank Chang","doi":"10.1109/ISSCC.2012.6177029","DOIUrl":null,"url":null,"abstract":"The available ISM band from 57-65GHz has become attractive for high-speed wireless applications including mass data transfer, streaming high-definition video and even biomedical applications. While silicon based data transceivers at mm-wave frequencies have become increasingly mature in recent years [1,2,3], the primary focus of the circuit community remains on the design of mm-wave front-ends to achieve higher data rates through higher-order modulation and beamforming techniques. However, the sustainability of such mm-wave systems when integrated in a SoC has not been addressed in the context of die performance yield and device aging. This problem is especially challenging for the implementation of mm-wave SoC's in deep sub-micron technology due to its process & operating temperature variations and limited ft / fmax with respect to the operation frequency.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A low-overhead self-healing embedded system for ensuring high yield and long-term sustainability of 60GHz 4Gb/s radio-on-a-chip\",\"authors\":\"A. Tang, F. Hsiao, D. Murphy, I-Ning Ku, J. Liu, Sandeep D'Souza, N. Wang, Hao Wu, Yen-Hsiang Wang, Mandy Tang, G. Virbila, Mike Pham, Derek Yang, Q. Gu, Yi-Cheng Wu, Yen-Cheng Kuan, C. Chien, Mau-Chung Frank Chang\",\"doi\":\"10.1109/ISSCC.2012.6177029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The available ISM band from 57-65GHz has become attractive for high-speed wireless applications including mass data transfer, streaming high-definition video and even biomedical applications. While silicon based data transceivers at mm-wave frequencies have become increasingly mature in recent years [1,2,3], the primary focus of the circuit community remains on the design of mm-wave front-ends to achieve higher data rates through higher-order modulation and beamforming techniques. However, the sustainability of such mm-wave systems when integrated in a SoC has not been addressed in the context of die performance yield and device aging. This problem is especially challenging for the implementation of mm-wave SoC's in deep sub-micron technology due to its process & operating temperature variations and limited ft / fmax with respect to the operation frequency.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6177029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6177029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-overhead self-healing embedded system for ensuring high yield and long-term sustainability of 60GHz 4Gb/s radio-on-a-chip
The available ISM band from 57-65GHz has become attractive for high-speed wireless applications including mass data transfer, streaming high-definition video and even biomedical applications. While silicon based data transceivers at mm-wave frequencies have become increasingly mature in recent years [1,2,3], the primary focus of the circuit community remains on the design of mm-wave front-ends to achieve higher data rates through higher-order modulation and beamforming techniques. However, the sustainability of such mm-wave systems when integrated in a SoC has not been addressed in the context of die performance yield and device aging. This problem is especially challenging for the implementation of mm-wave SoC's in deep sub-micron technology due to its process & operating temperature variations and limited ft / fmax with respect to the operation frequency.